|
- /*
- *********************************************************************************************************
- * uC/LIB
- * Custom Library Modules
- *
- * Copyright 2004-2021 Silicon Laboratories Inc. www.silabs.com
- *
- * SPDX-License-Identifier: APACHE-2.0
- *
- * This software is subject to an open source license and is distributed by
- * Silicon Laboratories Inc. pursuant to the terms of the Apache License,
- * Version 2.0 available at www.apache.org/licenses/LICENSE-2.0.
- *
- *********************************************************************************************************
- */
-
- /*
- *********************************************************************************************************
- *
- * STANDARD MEMORY OPERATIONS
- *
- * Filename : lib_mem.h
- * Version : V1.39.01
- *********************************************************************************************************
- * Note(s) : (1) NO compiler-supplied standard library functions are used in library or product software.
- *
- * (a) ALL standard library functions are implemented in the custom library modules :
- *
- * (1) \<Custom Library Directory>\lib_*.*
- *
- * (2) \<Custom Library Directory>\Ports\<cpu>\<compiler>\lib*_a.*
- *
- * where
- * <Custom Library Directory> directory path for custom library software
- * <cpu> directory name for specific processor (CPU)
- * <compiler> directory name for specific compiler
- *
- * (b) Product-specific library functions are implemented in individual products.
- *
- * (2) Assumes the following versions (or more recent) of software modules are included in
- * the project build :
- *
- * (a) uC/CPU V1.27
- *********************************************************************************************************
- */
-
- /*
- *********************************************************************************************************
- * MODULE
- *
- * Note(s) : (1) This memory library header file is protected from multiple pre-processor inclusion through
- * use of the memory library module present pre-processor macro definition.
- *********************************************************************************************************
- */
-
- #ifndef LIB_MEM_MODULE_PRESENT /* See Note #1. */
- #define LIB_MEM_MODULE_PRESENT
-
-
- /*
- *********************************************************************************************************
- * INCLUDE FILES
- *
- * Note(s) : (1) The custom library software files are located in the following directories :
- *
- * (a) \<Your Product Application>\lib_cfg.h
- *
- * (b) \<Custom Library Directory>\lib_*.*
- *
- * where
- * <Your Product Application> directory path for Your Product's Application
- * <Custom Library Directory> directory path for custom library software
- *
- * (2) CPU-configuration software files are located in the following directories :
- *
- * (a) \<CPU-Compiler Directory>\cpu_*.*
- * (b) \<CPU-Compiler Directory>\<cpu>\<compiler>\cpu*.*
- *
- * where
- * <CPU-Compiler Directory> directory path for common CPU-compiler software
- * <cpu> directory name for specific processor (CPU)
- * <compiler> directory name for specific compiler
- *
- * (3) Compiler MUST be configured to include as additional include path directories :
- *
- * (a) '\<Your Product Application>\' directory See Note #1a
- *
- * (b) '\<Custom Library Directory>\' directory See Note #1b
- *
- * (c) (1) '\<CPU-Compiler Directory>\' directory See Note #2a
- * (2) '\<CPU-Compiler Directory>\<cpu>\<compiler>\' directory See Note #2b
- *
- * (4) NO compiler-supplied standard library functions SHOULD be used.
- *********************************************************************************************************
- */
-
- #include <cpu.h>
- #include <cpu_core.h>
-
- #include <lib_def.h>
- #include <lib_cfg.h>
-
-
- /*
- *********************************************************************************************************
- * EXTERNS
- *********************************************************************************************************
- */
-
- #ifdef LIB_MEM_MODULE
- #define LIB_MEM_EXT
- #else
- #define LIB_MEM_EXT extern
- #endif
-
-
- /*
- *********************************************************************************************************
- * DEFINES
- *********************************************************************************************************
- */
-
- #define LIB_MEM_PADDING_ALIGN_NONE 1u
-
- #define LIB_MEM_BLK_QTY_UNLIMITED 0u
-
-
- /*
- *********************************************************************************************************
- * DEFAULT CONFIGURATION
- *********************************************************************************************************
- */
-
- /*
- *********************************************************************************************************
- * MEMORY LIBRARY ARGUMENT CHECK CONFIGURATION
- *
- * Note(s) : (1) Configure LIB_MEM_CFG_ARG_CHK_EXT_EN to enable/disable the memory library suite external
- * argument check feature :
- *
- * (a) When ENABLED, arguments received from any port interface provided by the developer
- * or application are checked/validated.
- *
- * (b) When DISABLED, NO arguments received from any port interface provided by the developer
- * or application are checked/validated.
- *********************************************************************************************************
- */
-
- /* Cfg external argument check feature (see Note #1) : */
- #ifndef LIB_MEM_CFG_ARG_CHK_EXT_EN
- #define LIB_MEM_CFG_ARG_CHK_EXT_EN DEF_DISABLED
- /* DEF_DISABLED Argument check DISABLED */
- /* DEF_ENABLED Argument check ENABLED */
- #endif
-
-
- /*
- *********************************************************************************************************
- * MEMORY LIBRARY ASSEMBLY OPTIMIZATION CONFIGURATION
- *
- * Note(s) : (1) Configure LIB_MEM_CFG_OPTIMIZE_ASM_EN to enable/disable assembly-optimized memory
- * functions.
- *********************************************************************************************************
- */
-
- /* Cfg assembly-optimized function(s) [see Note #1] : */
- #ifndef LIB_MEM_CFG_OPTIMIZE_ASM_EN
- #define LIB_MEM_CFG_OPTIMIZE_ASM_EN DEF_DISABLED
- /* DEF_DISABLED Assembly-optimized fnct(s) DISABLED */
- /* DEF_ENABLED Assembly-optimized fnct(s) ENABLED */
- #endif
-
-
- /*
- *********************************************************************************************************
- * MEMORY ALLOCATION DEBUG INFORMATION CONFIGURATION
- *
- * Note(s) : (1) Configure LIB_MEM_CFG_DBG_INFO_EN to enable/disable debug information associated to each
- * segment allocation.
- *********************************************************************************************************
- */
-
- #ifndef LIB_MEM_CFG_DBG_INFO_EN
- #define LIB_MEM_CFG_DBG_INFO_EN DEF_DISABLED
- #endif
-
-
- /*
- *********************************************************************************************************
- * HEAP PADDING ALIGN CONFIGURATION
- *
- * Note(s) : (1) Configure LIB_MEM_CFG_HEAP_PADDING_ALIGN to set the padding alignment of any buffer
- * allocated from the heap.
- *********************************************************************************************************
- */
-
- #ifndef LIB_MEM_CFG_HEAP_PADDING_ALIGN
- #define LIB_MEM_CFG_HEAP_PADDING_ALIGN LIB_MEM_PADDING_ALIGN_NONE
- #endif
-
-
- /*
- *********************************************************************************************************
- * DATA TYPES
- *********************************************************************************************************
- */
-
- /*
- *********************************************************************************************************
- * LIB MEM TYPE
- *
- * Note(s) : (1) 'LIB_MEM_TYPE' declared as 'CPU_INT32U' & all 'LIB_MEM_TYPE's #define'd with large, non-trivial
- * values to trap & discard invalid/corrupted library memory objects based on 'LIB_MEM_TYPE'.
- *********************************************************************************************************
- */
-
- typedef CPU_INT32U LIB_MEM_TYPE;
-
-
- /*
- *********************************************************************************************************
- * MEMORY POOL BLOCK QUANTITY DATA TYPE
- *********************************************************************************************************
- */
-
- typedef CPU_SIZE_T MEM_POOL_BLK_QTY;
-
-
- /*
- *********************************************************************************************************
- * MEMORY POOL TABLE IX TYPE
- *********************************************************************************************************
- */
-
- typedef MEM_POOL_BLK_QTY MEM_POOL_IX;
-
-
- /*
- *********************************************************************************************************
- * MEMORY ALLOCATION TRACKING INFO DATA TYPE
- *********************************************************************************************************
- */
-
- #if (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED)
- typedef struct mem_alloc_info MEM_ALLOC_INFO;
-
- struct mem_alloc_info { /* ------------------ MEM ALLOC INFO ------------------ */
- const CPU_CHAR *NamePtr; /* Ptr to name. */
- CPU_SIZE_T Size; /* Total alloc'd size, in bytes. */
- MEM_ALLOC_INFO *NextPtr; /* Ptr to next alloc info in list. */
- };
- #endif
-
-
- /*
- *********************************************************************************************************
- * MEMORY SEGMENTS DATA TYPES
- *********************************************************************************************************
- */
-
- typedef struct mem_seg MEM_SEG; /* --------------------- SEG DATA --------------------- */
-
- struct mem_seg {
- CPU_ADDR AddrBase; /* Seg start addr. */
- CPU_ADDR AddrEnd; /* Seg end addr (last addr). */
- CPU_ADDR AddrNext; /* Next free addr. */
-
- MEM_SEG *NextPtr; /* Ptr to next seg. */
-
- CPU_SIZE_T PaddingAlign; /* Padding alignment in byte. */
-
- #if (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED)
- const CPU_CHAR *NamePtr; /* Ptr to seg name. */
- MEM_ALLOC_INFO *AllocInfoHeadPtr; /* Ptr to head of alloc info struct list. */
- #endif
- };
-
- typedef struct mem_seg_info { /* --------------------- SEG INFO --------------------- */
- CPU_SIZE_T UsedSize; /* Used size, independently of alignment. */
- CPU_SIZE_T TotalSize; /* Total seg capacity, in octets. */
-
- CPU_ADDR AddrBase;
- CPU_ADDR AddrNextAlloc; /* Next aligned address, 0 if none available. */
- } MEM_SEG_INFO;
-
-
- /*
- *********************************************************************************************************
- * (STATIC) MEMORY POOL DATA TYPES
- *
- * Note(s) : (1) Free static memory pool blocks are indexed in the 'BlkFreeTbl' table. Newly freed blocks
- * are added at the first available position in the table and blocks are retrieved from the
- * last occupied position, in a LIFO fashion.
- *
- * /-------------------------------\
- * |/------------\ |
- * BlkFreeTbl || Start v v End
- * /--------\ || /--------------------------------------------\
- * |p_free_1|---/| | | | | | |
- * |--------| | \--------------------------------------------/
- * |p_free_2|----/ ^ | |
- * |--------| | |__Blk___|
- * |p_free_3|--------/ (Next block to be retrieved.) Size
- * |--------|
- * | |<-------- (Next block to be freed.)
- * \--------/
- *
- *********************************************************************************************************
- */
-
- /* --------------------- MEM POOL --------------------- */
- typedef struct mem_pool {
- void *PoolAddrStart; /* Ptr to start of mem seg for mem pool blks. */
- void *PoolAddrEnd; /* Ptr to end of mem seg for mem pool blks. */
- MEM_POOL_BLK_QTY BlkNbr; /* Nbr of mem pool blks. */
- CPU_SIZE_T BlkSize; /* Size of mem pool blks (in octets). */
- void **BlkFreeTbl; /* Tbl of free mem pool blks. */
- CPU_SIZE_T BlkFreeTblIx; /* Ix of next free blk free tbl entry. */
- } MEM_POOL;
-
-
- /*
- *********************************************************************************************************
- * DYNAMIC MEMORY POOL DATA TYPE
- *
- * Note(s) : (1) Dynamic memory pool blocks are not indexed in a table. Only freed blocks are linked using
- * a singly linked list, in a LIFO fashion; newly freed blocks are inserted at the head of the
- * list and blocks are also retrieved from the head of the list.
- *
- * (2) Pointers to the next block are only present when a block is free, using the first location
- * in the allocated memory block. The user of dynamic memory pool must not assume his data
- * will not be overwritten when a block is freed.
- *
- * /----------------\
- * /----------\ | /----------\ | /----------\ /----------\
- * BlkFreePtr-->|(NextPtr) |---/ | | \--->|(NextPtr) |-->|(NextPtr) |--> DEF_NULL
- * |----------| | Blk in | |----------| |----------|
- * | | | use | | | | |
- * | | | | | | | |
- * \----------/ \----------/ \----------/ \----------/
- *
- *********************************************************************************************************
- */
-
- typedef struct mem_dyn_pool { /* ---------------- DYN MEM POOL DATA ----------------- */
- MEM_SEG *PoolSegPtr; /* Mem pool from which blks are alloc'd. */
- CPU_SIZE_T BlkSize; /* Size of pool blks, in octets. */
- CPU_SIZE_T BlkAlign; /* Align req'd for blks, in octets. */
- CPU_SIZE_T BlkPaddingAlign; /* Padding alignment in bytes for this mem seg. */
- void *BlkFreePtr; /* Ptr to first free blk. */
-
- CPU_SIZE_T BlkQtyMax; /* Max qty of blk in dyn mem pool. 0 = unlimited. */
- CPU_SIZE_T BlkAllocCnt; /* Cnt of alloc blk. */
-
- #if (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED)
- const CPU_CHAR *NamePtr; /* Ptr to mem pool name. */
- #endif
- } MEM_DYN_POOL;
-
-
- /*
- *********************************************************************************************************
- * GLOBAL VARIABLES
- *********************************************************************************************************
- */
-
-
- /*
- *********************************************************************************************************
- * MACRO'S
- *********************************************************************************************************
- */
-
- /*
- *********************************************************************************************************
- * MEMORY DATA VALUE MACRO'S
- *
- * Note(s) : (1) (a) Some variables & variable buffers to pass & receive data values MUST start on appropriate
- * CPU word-aligned addresses. This is required because most word-aligned processors are more
- * efficient & may even REQUIRE that multi-octet words start on CPU word-aligned addresses.
- *
- * (1) For 16-bit word-aligned processors, this means that
- *
- * all 16- & 32-bit words MUST start on addresses that are multiples of 2 octets
- *
- * (2) For 32-bit word-aligned processors, this means that
- *
- * all 16-bit words MUST start on addresses that are multiples of 2 octets
- * all 32-bit words MUST start on addresses that are multiples of 4 octets
- *
- * (b) However, some data values macro's appropriately access data values from any CPU addresses,
- * word-aligned or not. Thus for processors that require data word alignment, data words can
- * be accessed to/from any CPU address, word-aligned or not, without generating data-word-
- * alignment exceptions/faults.
- *********************************************************************************************************
- */
-
-
- /*
- *********************************************************************************************************
- * ENDIAN WORD ORDER MACRO'S
- *
- * Description : Convert data values to & from big-, little, or host-endian CPU word order.
- *
- * Argument(s) : val Data value to convert (see Notes #1 & #2).
- *
- * Return(s) : Converted data value (see Notes #1 & #2).
- *
- * Caller(s) : Application.
- *
- * Note(s) : (1) Convert data values to the desired data-word order :
- *
- * MEM_VAL_BIG_TO_LITTLE_xx() Convert big- endian data values
- * to little- endian data values
- * MEM_VAL_LITTLE_TO_BIG_xx() Convert little- endian data values
- * to big- endian data values
- * MEM_VAL_xxx_TO_HOST_xx() Convert big-/little-endian data values
- * to host- endian data values
- * MEM_VAL_HOST_TO_xxx_xx() Convert host- endian data values
- * to big-/little-endian data values
- *
- * See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
- *
- * (2) 'val' data value to convert & any variable to receive the returned conversion MUST
- * start on appropriate CPU word-aligned addresses.
- *
- * See also 'MEMORY DATA VALUE MACRO'S Note #1a'.
- *
- * (3) MEM_VAL_COPY_xxx() macro's are more efficient than generic endian word order macro's &
- * are also independent of CPU data-word-alignment & SHOULD be used whenever possible.
- *
- * See also 'MEM_VAL_COPY_GET_xxx() Note #4'
- * & 'MEM_VAL_COPY_SET_xxx() Note #4'.
- *
- * (4) Generic endian word order macro's are NOT atomic operations & MUST NOT be used on any
- * non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
- * the macro's providing some form of additional protection (e.g. mutual exclusion).
- *
- * (5) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
- * linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
- * constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
- * value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
- * included as an extra precaution in case 'cpu.h' is incorrectly configured.
- *********************************************************************************************************
- */
-
- #if ((CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_64) || \
- (CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_32))
-
- #define MEM_VAL_BIG_TO_LITTLE_16(val) ((CPU_INT16U)(((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
- ((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) << (1u * DEF_OCTET_NBR_BITS)))))
-
- #define MEM_VAL_BIG_TO_LITTLE_32(val) ((CPU_INT32U)(((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))) | \
- ((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (1u * DEF_OCTET_NBR_BITS))) | \
- ((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) << (1u * DEF_OCTET_NBR_BITS))) | \
- ((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) << (3u * DEF_OCTET_NBR_BITS)))))
-
- #elif (CPU_CFG_DATA_SIZE == CPU_WORD_SIZE_16)
-
- #define MEM_VAL_BIG_TO_LITTLE_16(val) ((CPU_INT16U)(((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
- ((CPU_INT16U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) << (1u * DEF_OCTET_NBR_BITS)))))
-
- #define MEM_VAL_BIG_TO_LITTLE_32(val) ((CPU_INT32U)(((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (1u * DEF_OCTET_NBR_BITS))) | \
- ((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) << (1u * DEF_OCTET_NBR_BITS))) | \
- ((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))) | \
- ((CPU_INT32U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) << (1u * DEF_OCTET_NBR_BITS)))))
-
- #else
-
- #define MEM_VAL_BIG_TO_LITTLE_16(val) (val)
- #define MEM_VAL_BIG_TO_LITTLE_32(val) (val)
-
- #endif
-
-
- #define MEM_VAL_LITTLE_TO_BIG_16(val) MEM_VAL_BIG_TO_LITTLE_16(val)
- #define MEM_VAL_LITTLE_TO_BIG_32(val) MEM_VAL_BIG_TO_LITTLE_32(val)
-
-
-
- #if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
-
- #define MEM_VAL_BIG_TO_HOST_16(val) (val)
- #define MEM_VAL_BIG_TO_HOST_32(val) (val)
- #define MEM_VAL_LITTLE_TO_HOST_16(val) MEM_VAL_LITTLE_TO_BIG_16(val)
- #define MEM_VAL_LITTLE_TO_HOST_32(val) MEM_VAL_LITTLE_TO_BIG_32(val)
-
- #elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
-
- #define MEM_VAL_BIG_TO_HOST_16(val) MEM_VAL_BIG_TO_LITTLE_16(val)
- #define MEM_VAL_BIG_TO_HOST_32(val) MEM_VAL_BIG_TO_LITTLE_32(val)
- #define MEM_VAL_LITTLE_TO_HOST_16(val) (val)
- #define MEM_VAL_LITTLE_TO_HOST_32(val) (val)
-
- #else /* See Note #5. */
-
- #error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
- #error " [See 'cpu.h CONFIGURATION ERRORS']"
-
- #endif
-
-
- #define MEM_VAL_HOST_TO_BIG_16(val) MEM_VAL_BIG_TO_HOST_16(val)
- #define MEM_VAL_HOST_TO_BIG_32(val) MEM_VAL_BIG_TO_HOST_32(val)
- #define MEM_VAL_HOST_TO_LITTLE_16(val) MEM_VAL_LITTLE_TO_HOST_16(val)
- #define MEM_VAL_HOST_TO_LITTLE_32(val) MEM_VAL_LITTLE_TO_HOST_32(val)
-
-
- /*
- *********************************************************************************************************
- * MEM_VAL_GET_xxx()
- *
- * Description : Decode data values from any CPU memory address.
- *
- * Argument(s) : addr Lowest CPU memory address of data value to decode (see Notes #2 & #3a).
- *
- * Return(s) : Decoded data value from CPU memory address (see Notes #1 & #3b).
- *
- * Caller(s) : Application.
- *
- * Note(s) : (1) Decode data values based on the values' data-word order in CPU memory :
- *
- * MEM_VAL_GET_xxx_BIG() Decode big- endian data values -- data words' most
- * significant octet @ lowest memory address
- * MEM_VAL_GET_xxx_LITTLE() Decode little-endian data values -- data words' least
- * significant octet @ lowest memory address
- * MEM_VAL_GET_xxx() Decode data values using CPU's native or configured
- * data-word order
- *
- * See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
- *
- * (2) CPU memory addresses/pointers NOT checked for NULL.
- *
- * (3) (a) MEM_VAL_GET_xxx() macro's decode data values without regard to CPU word-aligned addresses.
- * Thus for processors that require data word alignment, data words can be decoded from any
- * CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
- *
- * (b) However, any variable to receive the returned data value MUST start on an appropriate CPU
- * word-aligned address.
- *
- * See also 'MEMORY DATA VALUE MACRO'S Note #1'.
- *
- * (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_GET_xxx() macro's & are
- * also independent of CPU data-word-alignment & SHOULD be used whenever possible.
- *
- * See also 'MEM_VAL_COPY_GET_xxx() Note #4'.
- *
- * (5) MEM_VAL_GET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
- * (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
- * providing some form of additional protection (e.g. mutual exclusion).
- *
- * (6) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
- * linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
- * constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
- * value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
- * included as an extra precaution in case 'cpu.h' is incorrectly configured.
- *********************************************************************************************************
- */
-
- #define MEM_VAL_GET_INT08U_BIG(addr) ((CPU_INT08U) ((CPU_INT08U)(((CPU_INT08U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))))
-
- #define MEM_VAL_GET_INT16U_BIG(addr) ((CPU_INT16U)(((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 0))) << (1u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 1))) << (0u * DEF_OCTET_NBR_BITS)))))
-
- #define MEM_VAL_GET_INT24U_BIG(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (2u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (0u * DEF_OCTET_NBR_BITS)))))
-
- #define MEM_VAL_GET_INT32U_BIG(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (3u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (2u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (1u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 3))) << (0u * DEF_OCTET_NBR_BITS)))))
-
-
-
- #define MEM_VAL_GET_INT08U_LITTLE(addr) ((CPU_INT08U) ((CPU_INT08U)(((CPU_INT08U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))))
-
- #define MEM_VAL_GET_INT16U_LITTLE(addr) ((CPU_INT16U)(((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT16U)(((CPU_INT16U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS)))))
-
- #define MEM_VAL_GET_INT24U_LITTLE(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (2u * DEF_OCTET_NBR_BITS)))))
-
- #define MEM_VAL_GET_INT32U_LITTLE(addr) ((CPU_INT32U)(((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 0))) << (0u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 1))) << (1u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 2))) << (2u * DEF_OCTET_NBR_BITS))) + \
- ((CPU_INT32U)(((CPU_INT32U)(*(((CPU_INT08U *)(addr)) + 3))) << (3u * DEF_OCTET_NBR_BITS)))))
-
-
-
- #if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
-
- #define MEM_VAL_GET_INT08U(addr) MEM_VAL_GET_INT08U_BIG(addr)
- #define MEM_VAL_GET_INT16U(addr) MEM_VAL_GET_INT16U_BIG(addr)
- #define MEM_VAL_GET_INT24U(addr) MEM_VAL_GET_INT24U_BIG(addr)
- #define MEM_VAL_GET_INT32U(addr) MEM_VAL_GET_INT32U_BIG(addr)
-
- #elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
-
- #define MEM_VAL_GET_INT08U(addr) MEM_VAL_GET_INT08U_LITTLE(addr)
- #define MEM_VAL_GET_INT16U(addr) MEM_VAL_GET_INT16U_LITTLE(addr)
- #define MEM_VAL_GET_INT24U(addr) MEM_VAL_GET_INT24U_LITTLE(addr)
- #define MEM_VAL_GET_INT32U(addr) MEM_VAL_GET_INT32U_LITTLE(addr)
-
- #else /* See Note #6. */
-
- #error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
- #error " [See 'cpu.h CONFIGURATION ERRORS']"
-
- #endif
-
-
- /*
- *********************************************************************************************************
- * MEM_VAL_SET_xxx()
- *
- * Description : Encode data values to any CPU memory address.
- *
- * Argument(s) : addr Lowest CPU memory address to encode data value (see Notes #2 & #3a).
- *
- * val Data value to encode (see Notes #1 & #3b).
- *
- * Return(s) : none.
- *
- * Caller(s) : Application.
- *
- * Note(s) : (1) Encode data values into CPU memory based on the values' data-word order :
- *
- * MEM_VAL_SET_xxx_BIG() Encode big- endian data values -- data words' most
- * significant octet @ lowest memory address
- * MEM_VAL_SET_xxx_LITTLE() Encode little-endian data values -- data words' least
- * significant octet @ lowest memory address
- * MEM_VAL_SET_xxx() Encode data values using CPU's native or configured
- * data-word order
- *
- * See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
- *
- * (2) CPU memory addresses/pointers NOT checked for NULL.
- *
- * (3) (a) MEM_VAL_SET_xxx() macro's encode data values without regard to CPU word-aligned addresses.
- * Thus for processors that require data word alignment, data words can be encoded to any
- * CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
- *
- * (b) However, 'val' data value to encode MUST start on an appropriate CPU word-aligned address.
- *
- * See also 'MEMORY DATA VALUE MACRO'S Note #1'.
- *
- * (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_SET_xxx() macro's & are
- * also independent of CPU data-word-alignment & SHOULD be used whenever possible.
- *
- * See also 'MEM_VAL_COPY_SET_xxx() Note #4'.
- *
- * (5) MEM_VAL_SET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
- * (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
- * providing some form of additional protection (e.g. mutual exclusion).
- *
- * (6) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
- * linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
- * constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
- * value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
- * included as an extra precaution in case 'cpu.h' is incorrectly configured.
- *********************************************************************************************************
- */
-
- #define MEM_VAL_SET_INT08U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT08U)(val)) & (CPU_INT08U) 0xFFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
-
- #define MEM_VAL_SET_INT16U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
-
- #define MEM_VAL_SET_INT24U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0xFF0000u) >> (2u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0x00FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0x0000FFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
-
- #define MEM_VAL_SET_INT32U_BIG(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (2u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 3)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
-
-
-
- #define MEM_VAL_SET_INT08U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT08U)(val)) & (CPU_INT08U) 0xFFu) >> (0u * DEF_OCTET_NBR_BITS))); } while (0)
-
- #define MEM_VAL_SET_INT16U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0x00FFu) >> (0u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT16U)(val)) & (CPU_INT16U) 0xFF00u) >> (1u * DEF_OCTET_NBR_BITS))); } while (0)
-
- #define MEM_VAL_SET_INT24U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0x0000FFu) >> (0u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0x00FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U) 0xFF0000u) >> (2u * DEF_OCTET_NBR_BITS))); } while (0)
-
- #define MEM_VAL_SET_INT32U_LITTLE(addr, val) do { (*(((CPU_INT08U *)(addr)) + 0)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x000000FFu) >> (0u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 1)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x0000FF00u) >> (1u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 2)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0x00FF0000u) >> (2u * DEF_OCTET_NBR_BITS))); \
- (*(((CPU_INT08U *)(addr)) + 3)) = ((CPU_INT08U)((((CPU_INT32U)(val)) & (CPU_INT32U)0xFF000000u) >> (3u * DEF_OCTET_NBR_BITS))); } while (0)
-
-
-
- #if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
-
- #define MEM_VAL_SET_INT08U(addr, val) MEM_VAL_SET_INT08U_BIG((addr), (val))
- #define MEM_VAL_SET_INT16U(addr, val) MEM_VAL_SET_INT16U_BIG((addr), (val))
- #define MEM_VAL_SET_INT24U(addr, val) MEM_VAL_SET_INT24U_BIG((addr), (val))
- #define MEM_VAL_SET_INT32U(addr, val) MEM_VAL_SET_INT32U_BIG((addr), (val))
-
- #elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
-
- #define MEM_VAL_SET_INT08U(addr, val) MEM_VAL_SET_INT08U_LITTLE((addr), (val))
- #define MEM_VAL_SET_INT16U(addr, val) MEM_VAL_SET_INT16U_LITTLE((addr), (val))
- #define MEM_VAL_SET_INT24U(addr, val) MEM_VAL_SET_INT24U_LITTLE((addr), (val))
- #define MEM_VAL_SET_INT32U(addr, val) MEM_VAL_SET_INT32U_LITTLE((addr), (val))
-
- #else /* See Note #6. */
-
- #error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
- #error " [See 'cpu.h CONFIGURATION ERRORS']"
-
- #endif
-
-
- /*
- *********************************************************************************************************
- * MEM_VAL_COPY_GET_xxx()
- *
- * Description : Copy & decode data values from any CPU memory address to any CPU memory address.
- *
- * Argument(s) : addr_dest Lowest CPU memory address to copy/decode source address's data value
- * (see Notes #2 & #3).
- *
- * addr_src Lowest CPU memory address of data value to copy/decode
- * (see Notes #2 & #3).
- *
- * Return(s) : none.
- *
- * Caller(s) : Application.
- *
- * Note(s) : (1) Copy/decode data values based on the values' data-word order :
- *
- * MEM_VAL_COPY_GET_xxx_BIG() Decode big- endian data values -- data words' most
- * significant octet @ lowest memory address
- * MEM_VAL_COPY_GET_xxx_LITTLE() Decode little-endian data values -- data words' least
- * significant octet @ lowest memory address
- * MEM_VAL_COPY_GET_xxx() Decode data values using CPU's native or configured
- * data-word order
- *
- * See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
- *
- * (2) (a) CPU memory addresses/pointers NOT checked for NULL.
- *
- * (b) CPU memory addresses/buffers NOT checked for overlapping.
- *
- * (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
- * "copying ... between objects that overlap ... is undefined".
- *
- * (3) MEM_VAL_COPY_GET_xxx() macro's copy/decode data values without regard to CPU word-aligned
- * addresses. Thus for processors that require data word alignment, data words can be copied/
- * decoded to/from any CPU address, word-aligned or not, without generating data-word-alignment
- * exceptions/faults.
- *
- * (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_GET_xxx() macro's & are
- * also independent of CPU data-word-alignment & SHOULD be used whenever possible.
- *
- * See also 'MEM_VAL_GET_xxx() Note #4'.
- *
- * (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_xxx() &
- * MEM_VAL_COPY_SET_xxx() macros are inverse, but identical, operations & are provided
- * in both forms for semantics & consistency.
- *
- * See also 'MEM_VAL_COPY_SET_xxx() Note #5'.
- *
- * (6) MEM_VAL_COPY_GET_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-
- * static (i.e. volatile) variables, registers, hardware, etc.; without the caller of the
- * macro's providing some form of additional protection (e.g. mutual exclusion).
- *
- * (7) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
- * linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
- * constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
- * value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
- * included as an extra precaution in case 'cpu.h' is incorrectly configured.
- *********************************************************************************************************
- */
-
- #if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
-
-
- #define MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); \
- (*((destptr) + 1)) = (*((srcptr) + 1)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT24U_BIG(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); \
- (*((destptr) + 1)) = (*((srcptr) + 1)); \
- (*((destptr) + 2)) = (*((srcptr) + 2)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); \
- (*((destptr) + 1)) = (*((srcptr) + 1)); \
- (*((destptr) + 2)) = (*((srcptr) + 2)); \
- (*((destptr) + 3)) = (*((srcptr) + 3)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 1)); \
- (*((destptr) + 1)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT24U_LITTLE(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 2)); \
- (*((destptr) + 1)) = (*((srcptr) + 1)); \
- (*((destptr) + 2)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 3)); \
- (*((destptr) + 1)) = (*((srcptr) + 2)); \
- (*((destptr) + 2)) = (*((srcptr) + 1)); \
- (*((destptr) + 3)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_BIG((addr_dest), (addr_src))
- #define MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_BIG((addr_dest), (addr_src))
- #define MEM_VAL_COPY_GET_INT24U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U_BIG((addr_dest), (addr_src))
- #define MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_BIG((addr_dest), (addr_src))
-
-
- #elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
-
-
- #define MEM_VAL_COPY_GET_INT08U_BIG(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT16U_BIG(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U * srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 1)); \
- (*((destptr) + 1)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT24U_BIG(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 2)); \
- (*((destptr) + 1)) = (*((srcptr) + 1)); \
- (*((destptr) + 2)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT32U_BIG(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 3)); \
- (*((destptr) + 1)) = (*((srcptr) + 2)); \
- (*((destptr) + 2)) = (*((srcptr) + 1)); \
- (*((destptr) + 3)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT08U_LITTLE(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT16U_LITTLE(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); \
- (*((destptr) + 1)) = (*((srcptr) + 1)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT24U_LITTLE(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); \
- (*((destptr) + 1)) = (*((srcptr) + 1)); \
- (*((destptr) + 2)) = (*((srcptr) + 2)); } while (0)
-
- #define MEM_VAL_COPY_GET_INT32U_LITTLE(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*((destptr) + 0)) = (*((srcptr) + 0)); \
- (*((destptr) + 1)) = (*((srcptr) + 1)); \
- (*((destptr) + 2)) = (*((srcptr) + 2)); \
- (*((destptr) + 3)) = (*((srcptr) + 3)); } while (0)
-
-
- #define MEM_VAL_COPY_GET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_LITTLE((addr_dest), (addr_src))
- #define MEM_VAL_COPY_GET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_LITTLE((addr_dest), (addr_src))
- #define MEM_VAL_COPY_GET_INT24U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U_LITTLE((addr_dest), (addr_src))
- #define MEM_VAL_COPY_GET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_LITTLE((addr_dest), (addr_src))
-
-
- #else /* See Note #7. */
-
- #error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
- #error " [See 'cpu.h CONFIGURATION ERRORS']"
-
- #endif
-
-
-
- /*
- *********************************************************************************************************
- * MEM_VAL_COPY_GET_INTU_xxx()
- *
- * Description : Copy & decode data values from any CPU memory address to any CPU memory address for
- * any sized data values.
- *
- * Argument(s) : addr_dest Lowest CPU memory address to copy/decode source address's data value
- * (see Notes #2 & #3).
- *
- * addr_src Lowest CPU memory address of data value to copy/decode
- * (see Notes #2 & #3).
- *
- * val_size Number of data value octets to copy/decode.
- *
- * Return(s) : none.
- *
- * Caller(s) : Application.
- *
- * Note(s) : (1) Copy/decode data values based on the values' data-word order :
- *
- * MEM_VAL_COPY_GET_INTU_BIG() Decode big- endian data values -- data words' most
- * significant octet @ lowest memory address
- * MEM_VAL_COPY_GET_INTU_LITTLE() Decode little-endian data values -- data words' least
- * significant octet @ lowest memory address
- * MEM_VAL_COPY_GET_INTU() Decode data values using CPU's native or configured
- * data-word order
- *
- * See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
- *
- * (2) (a) CPU memory addresses/pointers NOT checked for NULL.
- *
- * (b) CPU memory addresses/buffers NOT checked for overlapping.
- *
- * (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
- * "copying ... between objects that overlap ... is undefined".
- *
- * (3) MEM_VAL_COPY_GET_INTU_xxx() macro's copy/decode data values without regard to CPU word-
- * aligned addresses. Thus for processors that require data word alignment, data words
- * can be copied/decoded to/from any CPU address, word-aligned or not, without generating
- * data-word-alignment exceptions/faults.
- *
- * (4) MEM_VAL_COPY_GET_xxx() macro's are more efficient than MEM_VAL_COPY_GET_INTU_xxx()
- * macro's & SHOULD be used whenever possible.
- *
- * See also 'MEM_VAL_COPY_GET_xxx() Note #4'.
- *
- * (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_INTU_xxx() &
- * MEM_VAL_COPY_SET_INTU_xxx() macros are inverse, but identical, operations & are provided
- * in both forms for semantics & consistency.
- *
- * See also 'MEM_VAL_COPY_SET_INTU_xxx() Note #5'.
- *
- * (6) MEM_VAL_COPY_GET_INTU_xxx() macro's are NOT atomic operations & MUST NOT be used on any
- * non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
- * the macro's providing some form of additional protection (e.g. mutual exclusion).
- *
- * (7) MISRA-C 2004 Rule 5.2 states that "identifiers in an inner scope shall not use the same
- * name as an indentifier in an outer scope, and therefore hide that identifier".
- *
- * Therefore, to avoid possible redeclaration of commonly-used loop counter identifier names,
- * 'i' & 'j', MEM_VAL_COPY_GET_INTU_xxx() loop counter identifier names are prefixed with a
- * single underscore.
- *
- * (8) The 'CPU_CFG_ENDIAN_TYPE' pre-processor 'else'-conditional code SHOULD never be compiled/
- * linked since each 'cpu.h' SHOULD ensure that the CPU data-word-memory order configuration
- * constant (CPU_CFG_ENDIAN_TYPE) is configured with an appropriate data-word-memory order
- * value (see 'cpu.h CPU WORD CONFIGURATION Note #2'). The 'else'-conditional code is
- * included as an extra precaution in case 'cpu.h' is incorrectly configured.
- *********************************************************************************************************
- */
-
- #if (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_BIG)
-
-
- #define MEM_VAL_COPY_GET_INTU_BIG(addr_dest, addr_src, val_size) do { \
- CPU_SIZE_T _i; \
- \
- for (_i = 0; _i < (val_size); _i++) { \
- (*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _i)); \
- } \
- } while (0)
-
-
- #define MEM_VAL_COPY_GET_INTU_LITTLE(addr_dest, addr_src, val_size) do { \
- CPU_SIZE_T _i; \
- CPU_SIZE_T _j; \
- \
- \
- _j = (val_size) - 1; \
- \
- for (_i = 0; _i < (val_size); _i++) { \
- (*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _j)); \
- _j--; \
- } \
- } while (0)
-
-
- #define MEM_VAL_COPY_GET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_BIG((addr_dest), (addr_src), (val_size))
-
-
-
-
- #elif (CPU_CFG_ENDIAN_TYPE == CPU_ENDIAN_TYPE_LITTLE)
-
-
- #define MEM_VAL_COPY_GET_INTU_BIG(addr_dest, addr_src, val_size) do { \
- CPU_SIZE_T _i; \
- CPU_SIZE_T _j; \
- \
- \
- _j = (val_size) - 1; \
- \
- for (_i = 0; _i < (val_size); _i++) { \
- (*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _j)); \
- _j--; \
- } \
- } while (0)
-
-
- #define MEM_VAL_COPY_GET_INTU_LITTLE(addr_dest, addr_src, val_size) do { \
- CPU_SIZE_T _i; \
- \
- for (_i = 0; _i < (val_size); _i++) { \
- (*(((CPU_INT08U *)(addr_dest)) + _i)) = (*(((CPU_INT08U *)(addr_src)) + _i)); \
- } \
- } while (0)
-
-
- #define MEM_VAL_COPY_GET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_LITTLE((addr_dest), (addr_src), (val_size))
-
-
-
-
- #else /* See Note #8. */
-
- #error "CPU_CFG_ENDIAN_TYPE illegally #defined in 'cpu.h' "
- #error " [See 'cpu.h CONFIGURATION ERRORS']"
-
- #endif
-
-
- /*
- *********************************************************************************************************
- * MEM_VAL_COPY_SET_xxx()
- *
- * Description : Copy & encode data values from any CPU memory address to any CPU memory address.
- *
- * Argument(s) : addr_dest Lowest CPU memory address to copy/encode source address's data value
- * (see Notes #2 & #3).
- *
- * addr_src Lowest CPU memory address of data value to copy/encode
- * (see Notes #2 & #3).
- *
- * Return(s) : none.
- *
- * Caller(s) : Application.
- *
- * Note(s) : (1) Copy/encode data values based on the values' data-word order :
- *
- * MEM_VAL_COPY_SET_xxx_BIG() Encode big- endian data values -- data words' most
- * significant octet @ lowest memory address
- * MEM_VAL_COPY_SET_xxx_LITTLE() Encode little-endian data values -- data words' least
- * significant octet @ lowest memory address
- * MEM_VAL_COPY_SET_xxx() Encode data values using CPU's native or configured
- * data-word order
- *
- * See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
- *
- * (2) (a) CPU memory addresses/pointers NOT checked for NULL.
- *
- * (b) CPU memory addresses/buffers NOT checked for overlapping.
- *
- * (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
- * "copying ... between objects that overlap ... is undefined".
- *
- * (3) MEM_VAL_COPY_SET_xxx() macro's copy/encode data values without regard to CPU word-aligned
- * addresses. Thus for processors that require data word alignment, data words can be copied/
- * encoded to/from any CPU address, word-aligned or not, without generating data-word-alignment
- * exceptions/faults.
- *
- * (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_SET_xxx() macro's & are
- * also independent of CPU data-word-alignment & SHOULD be used whenever possible.
- *
- * See also 'MEM_VAL_SET_xxx() Note #4'.
- *
- * (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_xxx() &
- * MEM_VAL_COPY_SET_xxx() macros are inverse, but identical, operations & are provided
- * in both forms for semantics & consistency.
- *
- * See also 'MEM_VAL_COPY_GET_xxx() Note #5'.
- *
- * (6) MEM_VAL_COPY_SET_xxx() macro's are NOT atomic operations & MUST NOT be used on any
- * non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller
- * of the macro's providing some form of additional protection (e.g. mutual exclusion).
- *********************************************************************************************************
- */
-
- /* See Note #5. */
- #define MEM_VAL_COPY_SET_INT08U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_BIG((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT16U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_BIG((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT24U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U_BIG((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT32U_BIG(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_BIG((addr_dest), (addr_src))
-
- #define MEM_VAL_COPY_SET_INT08U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U_LITTLE((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT16U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U_LITTLE((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT24U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U_LITTLE((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT32U_LITTLE(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U_LITTLE((addr_dest), (addr_src))
-
-
- #define MEM_VAL_COPY_SET_INT08U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT08U((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT16U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT16U((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT24U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT24U((addr_dest), (addr_src))
- #define MEM_VAL_COPY_SET_INT32U(addr_dest, addr_src) MEM_VAL_COPY_GET_INT32U((addr_dest), (addr_src))
-
-
- /*
- *********************************************************************************************************
- * MEM_VAL_COPY_SET_INTU_xxx()
- *
- * Description : Copy & encode data values from any CPU memory address to any CPU memory address for
- * any sized data values.
- *
- * Argument(s) : addr_dest Lowest CPU memory address to copy/encode source address's data value
- * (see Notes #2 & #3).
- *
- * addr_src Lowest CPU memory address of data value to copy/encode
- * (see Notes #2 & #3).
- *
- * val_size Number of data value octets to copy/encode.
- *
- * Return(s) : none.
- *
- * Caller(s) : Application.
- *
- * Note(s) : (1) Copy/encode data values based on the values' data-word order :
- *
- * MEM_VAL_COPY_SET_INTU_BIG() Encode big- endian data values -- data words' most
- * significant octet @ lowest memory address
- * MEM_VAL_COPY_SET_INTU_LITTLE() Encode little-endian data values -- data words' least
- * significant octet @ lowest memory address
- * MEM_VAL_COPY_SET_INTU() Encode data values using CPU's native or configured
- * data-word order
- *
- * See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
- *
- * (2) (a) CPU memory addresses/pointers NOT checked for NULL.
- *
- * (b) CPU memory addresses/buffers NOT checked for overlapping.
- *
- * (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
- * "copying ... between objects that overlap ... is undefined".
- *
- * (3) MEM_VAL_COPY_SET_INTU_xxx() macro's copy/encode data values without regard to CPU word-
- * aligned addresses. Thus for processors that require data word alignment, data words
- * can be copied/encoded to/from any CPU address, word-aligned or not, without generating
- * data-word-alignment exceptions/faults.
- *
- * (4) MEM_VAL_COPY_SET_xxx() macro's are more efficient than MEM_VAL_COPY_SET_INTU_xxx()
- * macro's & SHOULD be used whenever possible.
- *
- * See also 'MEM_VAL_COPY_SET_xxx() Note #4'.
- *
- * (5) Since octet-order copy/conversion are inverse operations, MEM_VAL_COPY_GET_INTU_xxx() &
- * MEM_VAL_COPY_SET_INTU_xxx() macros are inverse, but identical, operations & are provided
- * in both forms for semantics & consistency.
- *
- * See also 'MEM_VAL_COPY_GET_INTU_xxx() Note #5'.
- *
- * (6) MEM_VAL_COPY_SET_INTU_xxx() macro's are NOT atomic operations & MUST NOT be used on any
- * non-static (i.e. volatile) variables, registers, hardware, etc.; without the caller of
- * the macro's providing some form of additional protection (e.g. mutual exclusion).
- *********************************************************************************************************
- */
-
- /* See Note #5. */
- #define MEM_VAL_COPY_SET_INTU_BIG(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_BIG((addr_dest), (addr_src), (val_size))
- #define MEM_VAL_COPY_SET_INTU_LITTLE(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU_LITTLE((addr_dest), (addr_src), (val_size))
- #define MEM_VAL_COPY_SET_INTU(addr_dest, addr_src, val_size) MEM_VAL_COPY_GET_INTU((addr_dest), (addr_src), (val_size))
-
-
- /*
- *********************************************************************************************************
- * MEM_VAL_COPY_xxx()
- *
- * Description : Copy data values from any CPU memory address to any CPU memory address.
- *
- * Argument(s) : addr_dest Lowest CPU memory address to copy source address's data value
- * (see Notes #2 & #3).
- *
- * addr_src Lowest CPU memory address of data value to copy
- * (see Notes #2 & #3).
- *
- * val_size Number of data value octets to copy.
- *
- * Return(s) : none.
- *
- * Caller(s) : Application.
- *
- * Note(s) : (1) MEM_VAL_COPY_xxx() macro's copy data values based on CPU's native data-word order.
- *
- * See also 'cpu.h CPU WORD CONFIGURATION Note #2'.
- *
- * (2) (a) CPU memory addresses/pointers NOT checked for NULL.
- *
- * (b) CPU memory addresses/buffers NOT checked for overlapping.
- *
- * (1) IEEE Std 1003.1, 2004 Edition, Section 'memcpy() : DESCRIPTION' states that
- * "copying ... between objects that overlap ... is undefined".
- *
- * (3) MEM_VAL_COPY_xxx() macro's copy data values without regard to CPU word-aligned addresses.
- * Thus for processors that require data word alignment, data words can be copied to/from any
- * CPU address, word-aligned or not, without generating data-word-alignment exceptions/faults.
- *
- * (4) MEM_VAL_COPY_xxx() macro's are more efficient than MEM_VAL_COPY() macro & SHOULD be
- * used whenever possible.
- *
- * (5) MEM_VAL_COPY_xxx() macro's are NOT atomic operations & MUST NOT be used on any non-static
- * (i.e. volatile) variables, registers, hardware, etc.; without the caller of the macro's
- * providing some form of additional protection (e.g. mutual exclusion).
- *
- * (6) MISRA-C 2004 Rule 5.2 states that "identifiers in an inner scope shall not use the same
- * name as an indentifier in an outer scope, and therefore hide that identifier".
- *
- * Therefore, to avoid possible redeclaration of commonly-used loop counter identifier name,
- * 'i', MEM_VAL_COPY() loop counter identifier name is prefixed with a single underscore.
- *********************************************************************************************************
- */
-
- #define MEM_VAL_COPY_08(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*(destptr + 0)) = (*(srcptr + 0)); } while (0)
-
- #define MEM_VAL_COPY_16(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*(destptr + 0)) = (*(srcptr + 0)); \
- (*(destptr + 1)) = (*(srcptr + 1)); } while (0)
-
- #define MEM_VAL_COPY_24(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*(destptr + 0)) = (*(srcptr + 0)); \
- (*(destptr + 1)) = (*(srcptr + 1)); \
- (*(destptr + 2)) = (*(srcptr + 2)); } while (0)
-
- #define MEM_VAL_COPY_32(addr_dest, addr_src) do { \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- (*(destptr + 0)) = (*(srcptr + 0)); \
- (*(destptr + 1)) = (*(srcptr + 1)); \
- (*(destptr + 2)) = (*(srcptr + 2)); \
- (*(destptr + 3)) = (*(srcptr + 3));} while (0)
-
- #define MEM_VAL_COPY(addr_dest, addr_src, val_size) do { \
- CPU_SIZE_T _i; \
- CPU_INT08U *destptr = (CPU_INT08U *)(addr_dest); \
- CPU_INT08U *srcptr = (CPU_INT08U *)(addr_src); \
- for (_i = 0; _i < (val_size); _i++) { \
- (*(destptr +_i)) = (*(srcptr +_i)); \
- } \
- } while (0)
-
-
- /*
- *********************************************************************************************************
- * FUNCTION PROTOTYPES
- *********************************************************************************************************
- */
-
- void Mem_Init ( void);
-
- /* ------------------ MEM API FNCTS ------------------ */
- void Mem_Clr ( void *pmem,
- CPU_SIZE_T size);
-
- void Mem_Set ( void *pmem,
- CPU_INT08U data_val,
- CPU_SIZE_T size);
-
- void Mem_Copy ( void *pdest,
- const void *psrc,
- CPU_SIZE_T size);
-
- void Mem_Move ( void *pdest,
- const void *psrc,
- CPU_SIZE_T size);
-
- CPU_BOOLEAN Mem_Cmp (const void *p1_mem,
- const void *p2_mem,
- CPU_SIZE_T size);
-
-
- /* ----------- MEM HEAP FNCTS (DEPRECATED) ------------ */
- #if (LIB_MEM_CFG_HEAP_SIZE > 0u)
- void *Mem_HeapAlloc ( CPU_SIZE_T size,
- CPU_SIZE_T align,
- CPU_SIZE_T *p_bytes_reqd,
- LIB_ERR *p_err);
-
- CPU_SIZE_T Mem_HeapGetSizeRem ( CPU_SIZE_T align,
- LIB_ERR *p_err);
- #endif
-
- /* ------------------ MEM SEG FNCTS ------------------- */
- void Mem_SegCreate (const CPU_CHAR *p_name,
- MEM_SEG *p_seg,
- CPU_ADDR seg_base_addr,
- CPU_SIZE_T size,
- CPU_SIZE_T padding_align,
- LIB_ERR *p_err);
-
- void Mem_SegClr ( MEM_SEG *p_seg,
- LIB_ERR *p_err);
-
- void *Mem_SegAlloc (const CPU_CHAR *p_name,
- MEM_SEG *p_seg,
- CPU_SIZE_T size,
- LIB_ERR *p_err);
-
- void *Mem_SegAllocExt (const CPU_CHAR *p_name,
- MEM_SEG *p_seg,
- CPU_SIZE_T size,
- CPU_SIZE_T align,
- CPU_SIZE_T *p_bytes_reqd,
- LIB_ERR *p_err);
-
- void *Mem_SegAllocHW (const CPU_CHAR *p_name,
- MEM_SEG *p_seg,
- CPU_SIZE_T size,
- CPU_SIZE_T align,
- CPU_SIZE_T *p_bytes_reqd,
- LIB_ERR *p_err);
-
- CPU_SIZE_T Mem_SegRemSizeGet ( MEM_SEG *p_seg,
- CPU_SIZE_T align,
- MEM_SEG_INFO *p_seg_info,
- LIB_ERR *p_err);
-
- #if (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED)
- void Mem_OutputUsage ( void (*out_fnct) (CPU_CHAR *),
- LIB_ERR *p_err);
- #endif
-
- /* -------- STATIC MEM POOL FNCTS (DEPRECATED) -------- */
- void Mem_PoolCreate ( MEM_POOL *p_pool,
- void *p_mem_base,
- CPU_SIZE_T mem_size,
- MEM_POOL_BLK_QTY blk_nbr,
- CPU_SIZE_T blk_size,
- CPU_SIZE_T blk_align,
- CPU_SIZE_T *p_bytes_reqd,
- LIB_ERR *p_err);
-
- void Mem_PoolClr ( MEM_POOL *p_pool,
- LIB_ERR *p_err);
-
- void *Mem_PoolBlkGet ( MEM_POOL *p_pool,
- CPU_SIZE_T size,
- LIB_ERR *p_err);
-
- void Mem_PoolBlkFree ( MEM_POOL *p_pool,
- void *p_blk,
- LIB_ERR *p_err);
-
- MEM_POOL_BLK_QTY Mem_PoolBlkGetNbrAvail ( MEM_POOL *p_pool,
- LIB_ERR *p_err);
-
- /* -------------- DYNAMIC MEM POOL FNCTS -------------- */
- void Mem_DynPoolCreate (const CPU_CHAR *p_name,
- MEM_DYN_POOL *p_pool,
- MEM_SEG *p_seg,
- CPU_SIZE_T blk_size,
- CPU_SIZE_T blk_align,
- CPU_SIZE_T blk_qty_init,
- CPU_SIZE_T blk_qty_max,
- LIB_ERR *p_err);
-
- void Mem_DynPoolCreateHW (const CPU_CHAR *p_name,
- MEM_DYN_POOL *p_pool,
- MEM_SEG *p_seg,
- CPU_SIZE_T blk_size,
- CPU_SIZE_T blk_align,
- CPU_SIZE_T blk_qty_init,
- CPU_SIZE_T blk_qty_max,
- LIB_ERR *p_err);
-
- void *Mem_DynPoolBlkGet ( MEM_DYN_POOL *p_pool,
- LIB_ERR *p_err);
-
- void Mem_DynPoolBlkFree ( MEM_DYN_POOL *p_pool,
- void *p_blk,
- LIB_ERR *p_err);
-
- CPU_SIZE_T Mem_DynPoolBlkNbrAvailGet( MEM_DYN_POOL *p_pool,
- LIB_ERR *p_err);
-
-
- /*
- *********************************************************************************************************
- * CONFIGURATION ERRORS
- *********************************************************************************************************
- */
-
- #ifndef LIB_MEM_CFG_ARG_CHK_EXT_EN
- #error "LIB_MEM_CFG_ARG_CHK_EXT_EN not #define'd in 'lib_cfg.h'"
- #error " [MUST be DEF_DISABLED] "
- #error " [ || DEF_ENABLED ] "
-
- #elif ((LIB_MEM_CFG_ARG_CHK_EXT_EN != DEF_DISABLED) && \
- (LIB_MEM_CFG_ARG_CHK_EXT_EN != DEF_ENABLED ))
- #error "LIB_MEM_CFG_ARG_CHK_EXT_EN illegally #define'd in 'lib_cfg.h'"
- #error " [MUST be DEF_DISABLED] "
- #error " [ || DEF_ENABLED ] "
- #endif
-
-
-
- #ifndef LIB_MEM_CFG_OPTIMIZE_ASM_EN
- #error "LIB_MEM_CFG_OPTIMIZE_ASM_EN not #define'd in 'lib_cfg.h'"
- #error " [MUST be DEF_DISABLED] "
- #error " [ || DEF_ENABLED ] "
-
- #elif ((LIB_MEM_CFG_OPTIMIZE_ASM_EN != DEF_DISABLED) && \
- (LIB_MEM_CFG_OPTIMIZE_ASM_EN != DEF_ENABLED ))
- #error "LIB_MEM_CFG_OPTIMIZE_ASM_EN illegally #define'd in 'lib_cfg.h'"
- #error " [MUST be DEF_DISABLED] "
- #error " [ || DEF_ENABLED ] "
- #endif
-
-
- #ifndef LIB_MEM_CFG_HEAP_SIZE
- #error "LIB_MEM_CFG_HEAP_SIZE not #define'd in 'lib_cfg.h'"
- #error " [MUST be >= 0] "
- #endif
-
-
- #ifdef LIB_MEM_CFG_HEAP_BASE_ADDR
- #if (LIB_MEM_CFG_HEAP_BASE_ADDR == 0x0)
- #error "LIB_MEM_CFG_HEAP_BASE_ADDR illegally #define'd in 'lib_cfg.h'"
- #error " [MUST be > 0x0] "
- #endif
- #endif
-
-
- #if ((LIB_MEM_CFG_DBG_INFO_EN != DEF_DISABLED) && \
- (LIB_MEM_CFG_DBG_INFO_EN != DEF_ENABLED ))
- #error "LIB_MEM_CFG_DBG_INFO_EN illegally defined in 'lib_cfg.h'"
- #error " [MUST be DEF_DISABLED] "
- #error " [ || DEF_ENABLED ] "
-
- #elif ((LIB_MEM_CFG_HEAP_SIZE == 0u) && \
- (LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED))
- #error "LIB_MEM_CFG_HEAP_SIZE illegally defined in 'lib_cfg.h' "
- #error " [MUST be > 0 when LIB_MEM_CFG_DBG_INFO_EN == DEF_ENABLED]"
- #endif
-
-
- /*
- *********************************************************************************************************
- * LIBRARY CONFIGURATION ERRORS
- *********************************************************************************************************
- */
-
- /* See 'lib_mem.h Note #2a'. */
- #if (CPU_CORE_VERSION < 127u)
- #error "CPU_CORE_VERSION [SHOULD be >= V1.27]"
- #endif
-
-
- /*
- *********************************************************************************************************
- * MODULE END
- *
- * Note(s) : (1) See 'lib_mem.h MODULE'.
- *********************************************************************************************************
- */
-
- #endif /* End of lib mem module include. */
|