|
- /*
- * Copyright (c) 2015, Freescale Semiconductor, Inc.
- * Copyright 2016-2019 NXP
- * All rights reserved.
- *
- * SPDX-License-Identifier: BSD-3-Clause
- */
-
- #include "fsl_dspi.h"
-
- /*******************************************************************************
- * Definitions
- ******************************************************************************/
-
- /* Component ID definition, used by tools. */
- #ifndef FSL_COMPONENT_ID
- #define FSL_COMPONENT_ID "platform.drivers.dspi"
- #endif
-
- /*! @brief Typedef for master interrupt handler. */
- typedef void (*dspi_master_isr_t)(SPI_Type *base, dspi_master_handle_t *handle);
-
- /*! @brief Typedef for slave interrupt handler. */
- typedef void (*dspi_slave_isr_t)(SPI_Type *base, dspi_slave_handle_t *handle);
-
- /*******************************************************************************
- * Prototypes
- ******************************************************************************/
- /*!
- * @brief Configures the DSPI peripheral chip select polarity.
- *
- * This function takes in the desired peripheral chip select (Pcs) and it's corresponding desired polarity and
- * configures the Pcs signal to operate with the desired characteristic.
- *
- * @param base DSPI peripheral address.
- * @param pcs The particular peripheral chip select (parameter value is of type dspi_which_pcs_t) for which we wish to
- * apply the active high or active low characteristic.
- * @param activeLowOrHigh The setting for either "active high, inactive low (0)" or "active low, inactive high(1)" of
- * type dspi_pcs_polarity_config_t.
- */
- static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh);
-
- /*!
- * @brief Master fill up the TX FIFO with data.
- * This is not a public API.
- */
- static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle);
-
- /*!
- * @brief Master finish up a transfer.
- * It would call back if there is callback function and set the state to idle.
- * This is not a public API.
- */
- static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle);
-
- /*!
- * @brief Slave fill up the TX FIFO with data.
- * This is not a public API.
- */
- static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle);
-
- /*!
- * @brief Slave finish up a transfer.
- * It would call back if there is callback function and set the state to idle.
- * This is not a public API.
- */
- static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle);
-
- /*!
- * @brief DSPI common interrupt handler.
- *
- * @param base DSPI peripheral address.
- * @param handle pointer to g_dspiHandle which stores the transfer state.
- */
- static void DSPI_CommonIRQHandler(SPI_Type *base, void *param);
-
- /*!
- * @brief Master prepare the transfer.
- * Basically it set up dspi_master_handle .
- * This is not a public API.
- */
- static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer);
-
- /*******************************************************************************
- * Variables
- ******************************************************************************/
-
- /* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
- static const uint32_t s_baudratePrescaler[] = {2, 3, 5, 7};
- static const uint32_t s_baudrateScaler[] = {2, 4, 6, 8, 16, 32, 64, 128,
- 256, 512, 1024, 2048, 4096, 8192, 16384, 32768};
-
- static const uint32_t s_delayPrescaler[] = {1, 3, 5, 7};
- static const uint32_t s_delayScaler[] = {2, 4, 8, 16, 32, 64, 128, 256,
- 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536};
-
- /*! @brief Pointers to dspi bases for each instance. */
- static SPI_Type *const s_dspiBases[] = SPI_BASE_PTRS;
-
- /*! @brief Pointers to dspi IRQ number for each instance. */
- static IRQn_Type const s_dspiIRQ[] = SPI_IRQS;
-
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /*! @brief Pointers to dspi clocks for each instance. */
- static clock_ip_name_t const s_dspiClock[] = DSPI_CLOCKS;
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-
- /*! @brief Pointers to dspi handles for each instance. */
- static void *g_dspiHandle[ARRAY_SIZE(s_dspiBases)];
-
- /*! @brief Pointer to master IRQ handler for each instance. */
- static dspi_master_isr_t s_dspiMasterIsr;
-
- /*! @brief Pointer to slave IRQ handler for each instance. */
- static dspi_slave_isr_t s_dspiSlaveIsr;
-
- /* @brief Dummy data for each instance. This data is used when user's tx buffer is NULL*/
- volatile uint8_t g_dspiDummyData[ARRAY_SIZE(s_dspiBases)] = {0};
- /**********************************************************************************************************************
- * Code
- *********************************************************************************************************************/
- /*!
- * brief Get instance number for DSPI module.
- *
- * param base DSPI peripheral base address.
- */
- uint32_t DSPI_GetInstance(SPI_Type *base)
- {
- uint32_t instance;
-
- /* Find the instance index from base address mappings. */
- for (instance = 0; instance < ARRAY_SIZE(s_dspiBases); instance++)
- {
- if (s_dspiBases[instance] == base)
- {
- break;
- }
- }
-
- assert(instance < ARRAY_SIZE(s_dspiBases));
-
- return instance;
- }
-
- /*!
- * brief Dummy data for each instance.
- *
- * The purpose of this API is to avoid MISRA rule8.5 : Multiple declarations of
- * externally-linked object or function g_dspiDummyData.
- *
- * param base DSPI peripheral base address.
- */
- uint8_t DSPI_GetDummyDataInstance(SPI_Type *base)
- {
- uint8_t instance = g_dspiDummyData[DSPI_GetInstance(base)];
-
- return instance;
- }
-
- /*!
- * brief Set up the dummy data.
- *
- * param base DSPI peripheral address.
- * param dummyData Data to be transferred when tx buffer is NULL.
- */
- void DSPI_SetDummyData(SPI_Type *base, uint8_t dummyData)
- {
- uint32_t instance = DSPI_GetInstance(base);
- g_dspiDummyData[instance] = dummyData;
- }
-
- /*!
- * brief Initializes the DSPI master.
- *
- * This function initializes the DSPI master configuration. This is an example use case.
- * code
- * dspi_master_config_t masterConfig;
- * masterConfig.whichCtar = kDSPI_Ctar0;
- * masterConfig.ctarConfig.baudRate = 500000000U;
- * masterConfig.ctarConfig.bitsPerFrame = 8;
- * masterConfig.ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
- * masterConfig.ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
- * masterConfig.ctarConfig.direction = kDSPI_MsbFirst;
- * masterConfig.ctarConfig.pcsToSckDelayInNanoSec = 1000000000U / masterConfig.ctarConfig.baudRate ;
- * masterConfig.ctarConfig.lastSckToPcsDelayInNanoSec = 1000000000U / masterConfig.ctarConfig.baudRate ;
- * masterConfig.ctarConfig.betweenTransferDelayInNanoSec = 1000000000U / masterConfig.ctarConfig.baudRate ;
- * masterConfig.whichPcs = kDSPI_Pcs0;
- * masterConfig.pcsActiveHighOrLow = kDSPI_PcsActiveLow;
- * masterConfig.enableContinuousSCK = false;
- * masterConfig.enableRxFifoOverWrite = false;
- * masterConfig.enableModifiedTimingFormat = false;
- * masterConfig.samplePoint = kDSPI_SckToSin0Clock;
- * DSPI_MasterInit(base, &masterConfig, srcClock_Hz);
- * endcode
- *
- * param base DSPI peripheral address.
- * param masterConfig Pointer to the structure dspi_master_config_t.
- * param srcClock_Hz Module source input clock in Hertz.
- */
- void DSPI_MasterInit(SPI_Type *base, const dspi_master_config_t *masterConfig, uint32_t srcClock_Hz)
- {
- assert(NULL != masterConfig);
-
- uint32_t temp;
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* enable DSPI clock */
- CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-
- DSPI_Enable(base, true);
- DSPI_StopTransfer(base);
-
- DSPI_SetOnePcsPolarity(base, masterConfig->whichPcs, masterConfig->pcsActiveHighOrLow);
- DSPI_SetMasterSlaveMode(base, kDSPI_Master);
-
- temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
- SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
-
- base->MCR = temp | SPI_MCR_CONT_SCKE(masterConfig->enableContinuousSCK) |
- SPI_MCR_MTFE(masterConfig->enableModifiedTimingFormat) |
- SPI_MCR_ROOE(masterConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(masterConfig->samplePoint) |
- SPI_MCR_DIS_TXF(0U) | SPI_MCR_DIS_RXF(0U);
-
- if (0U == DSPI_MasterSetBaudRate(base, masterConfig->whichCtar, masterConfig->ctarConfig.baudRate, srcClock_Hz))
- {
- assert(false);
- }
-
- temp = base->CTAR[masterConfig->whichCtar] &
- ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);
-
- base->CTAR[masterConfig->whichCtar] = temp | SPI_CTAR_FMSZ(masterConfig->ctarConfig.bitsPerFrame - 1U) |
- SPI_CTAR_CPOL(masterConfig->ctarConfig.cpol) |
- SPI_CTAR_CPHA(masterConfig->ctarConfig.cpha) |
- SPI_CTAR_LSBFE(masterConfig->ctarConfig.direction);
-
- (void)DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_PcsToSck, srcClock_Hz,
- masterConfig->ctarConfig.pcsToSckDelayInNanoSec);
- (void)DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_LastSckToPcs, srcClock_Hz,
- masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec);
- (void)DSPI_MasterSetDelayTimes(base, masterConfig->whichCtar, kDSPI_BetweenTransfer, srcClock_Hz,
- masterConfig->ctarConfig.betweenTransferDelayInNanoSec);
-
- DSPI_SetDummyData(base, DSPI_DUMMY_DATA);
- DSPI_StartTransfer(base);
- }
-
- /*!
- * brief Sets the dspi_master_config_t structure to default values.
- *
- * The purpose of this API is to get the configuration structure initialized for the DSPI_MasterInit().
- * Users may use the initialized structure unchanged in the DSPI_MasterInit() or modify the structure
- * before calling the DSPI_MasterInit().
- * Example:
- * code
- * dspi_master_config_t masterConfig;
- * DSPI_MasterGetDefaultConfig(&masterConfig);
- * endcode
- * param masterConfig pointer to dspi_master_config_t structure
- */
- void DSPI_MasterGetDefaultConfig(dspi_master_config_t *masterConfig)
- {
- assert(NULL != masterConfig);
-
- /* Initializes the configure structure to zero. */
- (void)memset(masterConfig, 0, sizeof(*masterConfig));
-
- masterConfig->whichCtar = kDSPI_Ctar0;
- masterConfig->ctarConfig.baudRate = 500000;
- masterConfig->ctarConfig.bitsPerFrame = 8;
- masterConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
- masterConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
- masterConfig->ctarConfig.direction = kDSPI_MsbFirst;
-
- masterConfig->ctarConfig.pcsToSckDelayInNanoSec = 1000;
- masterConfig->ctarConfig.lastSckToPcsDelayInNanoSec = 1000;
- masterConfig->ctarConfig.betweenTransferDelayInNanoSec = 1000;
-
- masterConfig->whichPcs = kDSPI_Pcs0;
- masterConfig->pcsActiveHighOrLow = kDSPI_PcsActiveLow;
-
- masterConfig->enableContinuousSCK = false;
- masterConfig->enableRxFifoOverWrite = false;
- masterConfig->enableModifiedTimingFormat = false;
- masterConfig->samplePoint = kDSPI_SckToSin0Clock;
- }
-
- /*!
- * brief DSPI slave configuration.
- *
- * This function initializes the DSPI slave configuration. This is an example use case.
- * code
- * dspi_slave_config_t slaveConfig;
- * slaveConfig->whichCtar = kDSPI_Ctar0;
- * slaveConfig->ctarConfig.bitsPerFrame = 8;
- * slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
- * slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
- * slaveConfig->enableContinuousSCK = false;
- * slaveConfig->enableRxFifoOverWrite = false;
- * slaveConfig->enableModifiedTimingFormat = false;
- * slaveConfig->samplePoint = kDSPI_SckToSin0Clock;
- * DSPI_SlaveInit(base, &slaveConfig);
- * endcode
- *
- * param base DSPI peripheral address.
- * param slaveConfig Pointer to the structure dspi_master_config_t.
- */
- void DSPI_SlaveInit(SPI_Type *base, const dspi_slave_config_t *slaveConfig)
- {
- assert(NULL != slaveConfig);
-
- uint32_t temp = 0;
-
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* enable DSPI clock */
- CLOCK_EnableClock(s_dspiClock[DSPI_GetInstance(base)]);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-
- DSPI_Enable(base, true);
- DSPI_StopTransfer(base);
-
- DSPI_SetMasterSlaveMode(base, kDSPI_Slave);
-
- temp = base->MCR & (~(SPI_MCR_CONT_SCKE_MASK | SPI_MCR_MTFE_MASK | SPI_MCR_ROOE_MASK | SPI_MCR_SMPL_PT_MASK |
- SPI_MCR_DIS_TXF_MASK | SPI_MCR_DIS_RXF_MASK));
-
- base->MCR = temp | SPI_MCR_CONT_SCKE(slaveConfig->enableContinuousSCK) |
- SPI_MCR_MTFE(slaveConfig->enableModifiedTimingFormat) |
- SPI_MCR_ROOE(slaveConfig->enableRxFifoOverWrite) | SPI_MCR_SMPL_PT(slaveConfig->samplePoint) |
- SPI_MCR_DIS_TXF(0U) | SPI_MCR_DIS_RXF(0U);
-
- DSPI_SetOnePcsPolarity(base, kDSPI_Pcs0, kDSPI_PcsActiveLow);
-
- temp = base->CTAR[slaveConfig->whichCtar] &
- ~(SPI_CTAR_FMSZ_MASK | SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK | SPI_CTAR_LSBFE_MASK);
-
- base->CTAR[slaveConfig->whichCtar] = temp | SPI_CTAR_SLAVE_FMSZ(slaveConfig->ctarConfig.bitsPerFrame - 1U) |
- SPI_CTAR_SLAVE_CPOL(slaveConfig->ctarConfig.cpol) |
- SPI_CTAR_SLAVE_CPHA(slaveConfig->ctarConfig.cpha);
-
- DSPI_SetDummyData(base, DSPI_DUMMY_DATA);
-
- DSPI_StartTransfer(base);
- }
-
- /*!
- * brief Sets the dspi_slave_config_t structure to a default value.
- *
- * The purpose of this API is to get the configuration structure initialized for the DSPI_SlaveInit().
- * Users may use the initialized structure unchanged in the DSPI_SlaveInit() or modify the structure
- * before calling the DSPI_SlaveInit().
- * This is an example.
- * code
- * dspi_slave_config_t slaveConfig;
- * DSPI_SlaveGetDefaultConfig(&slaveConfig);
- * endcode
- * param slaveConfig Pointer to the dspi_slave_config_t structure.
- */
- void DSPI_SlaveGetDefaultConfig(dspi_slave_config_t *slaveConfig)
- {
- assert(NULL != slaveConfig);
-
- /* Initializes the configure structure to zero. */
- (void)memset(slaveConfig, 0, sizeof(*slaveConfig));
-
- slaveConfig->whichCtar = kDSPI_Ctar0;
- slaveConfig->ctarConfig.bitsPerFrame = 8;
- slaveConfig->ctarConfig.cpol = kDSPI_ClockPolarityActiveHigh;
- slaveConfig->ctarConfig.cpha = kDSPI_ClockPhaseFirstEdge;
-
- slaveConfig->enableContinuousSCK = false;
- slaveConfig->enableRxFifoOverWrite = false;
- slaveConfig->enableModifiedTimingFormat = false;
- slaveConfig->samplePoint = kDSPI_SckToSin0Clock;
- }
-
- /*!
- * brief De-initializes the DSPI peripheral. Call this API to disable the DSPI clock.
- * param base DSPI peripheral address.
- */
- void DSPI_Deinit(SPI_Type *base)
- {
- DSPI_StopTransfer(base);
- DSPI_Enable(base, false);
-
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* disable DSPI clock */
- CLOCK_DisableClock(s_dspiClock[DSPI_GetInstance(base)]);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
- }
-
- static void DSPI_SetOnePcsPolarity(SPI_Type *base, dspi_which_pcs_t pcs, dspi_pcs_polarity_config_t activeLowOrHigh)
- {
- uint32_t temp;
-
- temp = base->MCR;
-
- if (activeLowOrHigh == kDSPI_PcsActiveLow)
- {
- temp |= SPI_MCR_PCSIS(pcs);
- }
- else
- {
- temp &= ~SPI_MCR_PCSIS(pcs);
- }
-
- base->MCR = temp;
- }
-
- /*!
- * brief Sets the DSPI baud rate in bits per second.
- *
- * This function takes in the desired baudRate_Bps (baud rate) and calculates the nearest possible baud rate without
- * exceeding the desired baud rate, and returns the calculated baud rate in bits-per-second. It requires that the
- * caller also provide the frequency of the module source clock (in Hertz).
- *
- * param base DSPI peripheral address.
- * param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of the type dspi_ctar_selection_t
- * param baudRate_Bps The desired baud rate in bits per second
- * param srcClock_Hz Module source input clock in Hertz
- * return The actual calculated baud rate
- */
- uint32_t DSPI_MasterSetBaudRate(SPI_Type *base,
- dspi_ctar_selection_t whichCtar,
- uint32_t baudRate_Bps,
- uint32_t srcClock_Hz)
- {
- /* for master mode configuration, if slave mode detected, return 0*/
- if (!DSPI_IsMaster(base))
- {
- return 0U;
- }
- uint32_t temp;
- uint32_t prescaler, bestPrescaler;
- uint32_t scaler, bestScaler;
- uint32_t dbr, bestDbr;
- uint32_t realBaudrate, bestBaudrate;
- uint32_t diff, min_diff;
- uint32_t baudrate = baudRate_Bps;
-
- /* find combination of prescaler and scaler resulting in baudrate closest to the requested value */
- min_diff = 0xFFFFFFFFU;
- bestPrescaler = 0;
- bestScaler = 0;
- bestDbr = 1;
- bestBaudrate = 0; /* required to avoid compilation warning */
-
- /* In all for loops, if min_diff = 0, the exit for loop*/
- for (prescaler = 0U; prescaler < 4U; prescaler++)
- {
- for (scaler = 0U; scaler < 16U; scaler++)
- {
- for (dbr = 1U; dbr < 3U; dbr++)
- {
- realBaudrate = ((srcClock_Hz * dbr) / (s_baudratePrescaler[prescaler] * (s_baudrateScaler[scaler])));
-
- /* calculate the baud rate difference based on the conditional statement that states that the calculated
- * baud rate must not exceed the desired baud rate.
- */
- if (baudrate >= realBaudrate)
- {
- diff = baudrate - realBaudrate;
- if (min_diff > diff)
- {
- /* a better match found */
- min_diff = diff;
- bestPrescaler = prescaler;
- bestScaler = scaler;
- bestBaudrate = realBaudrate;
- bestDbr = dbr;
- }
- }
- if (0U == min_diff)
- {
- break;
- }
- }
-
- if (0U == min_diff)
- {
- break;
- }
- }
- if (0U == min_diff)
- {
- break;
- }
- }
-
- /* write the best dbr, prescalar, and baud rate scalar to the CTAR */
- temp = base->CTAR[whichCtar] & ~(SPI_CTAR_DBR_MASK | SPI_CTAR_PBR_MASK | SPI_CTAR_BR_MASK);
-
- base->CTAR[whichCtar] = temp | ((bestDbr - 1U) << SPI_CTAR_DBR_SHIFT) | (bestPrescaler << SPI_CTAR_PBR_SHIFT) |
- (bestScaler << SPI_CTAR_BR_SHIFT);
-
- /* return the actual calculated baud rate */
- return bestBaudrate;
- }
-
- /*!
- * brief Manually configures the delay prescaler and scaler for a particular CTAR.
- *
- * This function configures the PCS to SCK delay pre-scalar (PcsSCK) and scalar (CSSCK), after SCK delay pre-scalar
- * (PASC) and scalar (ASC), and the delay after transfer pre-scalar (PDT) and scalar (DT).
- *
- * These delay names are available in the type dspi_delay_type_t.
- *
- * The user passes the delay to the configuration along with the prescaler and scaler value.
- * This allows the user to directly set the prescaler/scaler values if pre-calculated or
- * to manually increment either value.
- *
- * param base DSPI peripheral address.
- * param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of type dspi_ctar_selection_t.
- * param prescaler The prescaler delay value (can be an integer 0, 1, 2, or 3).
- * param scaler The scaler delay value (can be any integer between 0 to 15).
- * param whichDelay The desired delay to configure; must be of type dspi_delay_type_t
- */
- void DSPI_MasterSetDelayScaler(
- SPI_Type *base, dspi_ctar_selection_t whichCtar, uint32_t prescaler, uint32_t scaler, dspi_delay_type_t whichDelay)
- {
- /* these settings are only relevant in master mode */
- if (DSPI_IsMaster(base))
- {
- switch (whichDelay)
- {
- case kDSPI_PcsToSck:
- base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PCSSCK_MASK) & (~SPI_CTAR_CSSCK_MASK)) |
- SPI_CTAR_PCSSCK(prescaler) | SPI_CTAR_CSSCK(scaler);
- break;
- case kDSPI_LastSckToPcs:
- base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PASC_MASK) & (~SPI_CTAR_ASC_MASK)) |
- SPI_CTAR_PASC(prescaler) | SPI_CTAR_ASC(scaler);
- break;
- case kDSPI_BetweenTransfer:
- base->CTAR[whichCtar] = (base->CTAR[whichCtar] & (~SPI_CTAR_PDT_MASK) & (~SPI_CTAR_DT_MASK)) |
- SPI_CTAR_PDT(prescaler) | SPI_CTAR_DT(scaler);
- break;
- default:
- /* All cases have been listed above, the default clause should not be reached. */
- assert(false);
- break;
- }
- }
- }
-
- /*!
- * brief Calculates the delay prescaler and scaler based on the desired delay input in nanoseconds.
- *
- * This function calculates the values for the following.
- * PCS to SCK delay pre-scalar (PCSSCK) and scalar (CSSCK), or
- * After SCK delay pre-scalar (PASC) and scalar (ASC), or
- * Delay after transfer pre-scalar (PDT) and scalar (DT).
- *
- * These delay names are available in the type dspi_delay_type_t.
- *
- * The user passes which delay to configure along with the desired delay value in nanoseconds. The function
- * calculates the values needed for the prescaler and scaler. Note that returning the calculated delay as an exact
- * delay match may not be possible. In this case, the closest match is calculated without going below the desired
- * delay value input.
- * It is possible to input a very large delay value that exceeds the capability of the part, in which case the maximum
- * supported delay is returned. The higher-level peripheral driver alerts the user of an out of range delay
- * input.
- *
- * param base DSPI peripheral address.
- * param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of type dspi_ctar_selection_t.
- * param whichDelay The desired delay to configure, must be of type dspi_delay_type_t
- * param srcClock_Hz Module source input clock in Hertz
- * param delayTimeInNanoSec The desired delay value in nanoseconds.
- * return The actual calculated delay value.
- */
- uint32_t DSPI_MasterSetDelayTimes(SPI_Type *base,
- dspi_ctar_selection_t whichCtar,
- dspi_delay_type_t whichDelay,
- uint32_t srcClock_Hz,
- uint32_t delayTimeInNanoSec)
- {
- /* for master mode configuration, if slave mode detected, return 0 */
- if (!DSPI_IsMaster(base))
- {
- return 0U;
- }
-
- uint32_t prescaler, bestPrescaler;
- uint32_t scaler, bestScaler;
- uint32_t realDelay, bestDelay;
- uint32_t diff, min_diff;
- uint32_t initialDelayNanoSec;
-
- /* find combination of prescaler and scaler resulting in the delay closest to the
- * requested value
- */
- min_diff = 0xFFFFFFFFU;
- /* Initialize prescaler and scaler to their max values to generate the max delay */
- bestPrescaler = 0x3;
- bestScaler = 0xF;
- bestDelay = (((1000000000U * 4U) / srcClock_Hz) * s_delayPrescaler[bestPrescaler] * s_delayScaler[bestScaler]) / 4U;
-
- /* First calculate the initial, default delay */
- initialDelayNanoSec = 1000000000U / srcClock_Hz * 2U;
-
- /* If the initial, default delay is already greater than the desired delay, then
- * set the delays to their initial value (0) and return the delay. In other words,
- * there is no way to decrease the delay value further.
- */
- if (initialDelayNanoSec >= delayTimeInNanoSec)
- {
- DSPI_MasterSetDelayScaler(base, whichCtar, 0, 0, whichDelay);
- return initialDelayNanoSec;
- }
-
- /* In all for loops, if min_diff = 0, the exit for loop */
- for (prescaler = 0; prescaler < 4U; prescaler++)
- {
- for (scaler = 0; scaler < 16U; scaler++)
- {
- realDelay = ((4000000000U / srcClock_Hz) * s_delayPrescaler[prescaler] * s_delayScaler[scaler]) / 4U;
-
- /* calculate the delay difference based on the conditional statement
- * that states that the calculated delay must not be less then the desired delay
- */
- if (realDelay >= delayTimeInNanoSec)
- {
- diff = realDelay - delayTimeInNanoSec;
- if (min_diff > diff)
- {
- /* a better match found */
- min_diff = diff;
- bestPrescaler = prescaler;
- bestScaler = scaler;
- bestDelay = realDelay;
- }
- }
-
- if (0U == min_diff)
- {
- break;
- }
- }
- if (0U == min_diff)
- {
- break;
- }
- }
-
- /* write the best dbr, prescalar, and baud rate scalar to the CTAR */
- DSPI_MasterSetDelayScaler(base, whichCtar, bestPrescaler, bestScaler, whichDelay);
-
- /* return the actual calculated baud rate */
- return bestDelay;
- }
-
- /*!
- * brief Sets the dspi_command_data_config_t structure to default values.
- *
- * The purpose of this API is to get the configuration structure initialized for use in the DSPI_MasterWrite_xx().
- * Users may use the initialized structure unchanged in the DSPI_MasterWrite_xx() or modify the structure
- * before calling the DSPI_MasterWrite_xx().
- * This is an example.
- * code
- * dspi_command_data_config_t command;
- * DSPI_GetDefaultDataCommandConfig(&command);
- * endcode
- * param command Pointer to the dspi_command_data_config_t structure.
- */
- void DSPI_GetDefaultDataCommandConfig(dspi_command_data_config_t *command)
- {
- assert(NULL != command);
-
- /* Initializes the configure structure to zero. */
- (void)memset(command, 0, sizeof(*command));
-
- command->isPcsContinuous = false;
- command->whichCtar = (uint8_t)kDSPI_Ctar0;
- command->whichPcs = (uint8_t)kDSPI_Pcs0;
- command->isEndOfQueue = false;
- command->clearTransferCount = false;
- }
-
- /*!
- * brief Writes data into the data buffer master mode and waits till complete to return.
- *
- * In master mode, the 16-bit data is appended to the 16-bit command info. The command portion
- * provides characteristics of the data, such as the optional continuous chip select
- * operation between transfers, the desired Clock and Transfer Attributes register to use for the
- * associated SPI frame, the desired PCS signal to use for the data transfer, whether the current
- * transfer is the last in the queue, and whether to clear the transfer count (normally needed when
- * sending the first frame of a data packet). This is an example.
- * code
- * dspi_command_config_t commandConfig;
- * commandConfig.isPcsContinuous = true;
- * commandConfig.whichCtar = kDSPICtar0;
- * commandConfig.whichPcs = kDSPIPcs1;
- * commandConfig.clearTransferCount = false;
- * commandConfig.isEndOfQueue = false;
- * DSPI_MasterWriteDataBlocking(base, &commandConfig, dataWord);
- * endcode
- *
- * Note that this function does not return until after the transmit is complete. Also note that the DSPI must be
- * enabled and running to transmit data (MCR[MDIS] & [HALT] = 0). Because the SPI is a synchronous protocol,
- * the received data is available when the transmit completes.
- *
- * param base DSPI peripheral address.
- * param command Pointer to the command structure.
- * param data The data word to be sent.
- */
- void DSPI_MasterWriteDataBlocking(SPI_Type *base, dspi_command_data_config_t *command, uint16_t data)
- {
- assert(NULL != command);
-
- /* First, clear Transmit Complete Flag (TCF) */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxCompleteFlag);
-
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- }
-
- base->PUSHR = SPI_PUSHR_CONT(command->isPcsContinuous) | SPI_PUSHR_CTAS(command->whichCtar) |
- SPI_PUSHR_PCS(command->whichPcs) | SPI_PUSHR_EOQ(command->isEndOfQueue) |
- SPI_PUSHR_CTCNT(command->clearTransferCount) | SPI_PUSHR_TXDATA(data);
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
-
- /* Wait till TCF sets */
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxCompleteFlag))
- {
- }
- }
-
- /*!
- * brief Writes a 32-bit data word (16-bit command appended with 16-bit data) into the data
- * buffer master mode and waits till complete to return.
- *
- * In this function, the user must append the 16-bit data to the 16-bit command information and then provide the total
- * 32-bit word
- * as the data to send.
- * The command portion provides characteristics of the data, such as the optional continuous chip select operation
- * between transfers, the desired Clock and Transfer Attributes register to use for the associated SPI frame, the
- * desired PCS
- * signal to use for the data transfer, whether the current transfer is the last in the queue, and whether to clear the
- * transfer count (normally needed when sending the first frame of a data packet). The user is responsible for
- * appending this command with the data to send. This is an example:
- * code
- * dataWord = <16-bit command> | <16-bit data>;
- * DSPI_MasterWriteCommandDataBlocking(base, dataWord);
- * endcode
- *
- * Note that this function does not return until after the transmit is complete. Also note that the DSPI must be
- * enabled and running to transmit data (MCR[MDIS] & [HALT] = 0).
- * Because the SPI is a synchronous protocol, the received data is available when the transmit completes.
- *
- * For a blocking polling transfer, see methods below.
- * Option 1:
- * uint32_t command_to_send = DSPI_MasterGetFormattedCommand(&command);
- * uint32_t data0 = command_to_send | data_need_to_send_0;
- * uint32_t data1 = command_to_send | data_need_to_send_1;
- * uint32_t data2 = command_to_send | data_need_to_send_2;
- *
- * DSPI_MasterWriteCommandDataBlocking(base,data0);
- * DSPI_MasterWriteCommandDataBlocking(base,data1);
- * DSPI_MasterWriteCommandDataBlocking(base,data2);
- *
- * Option 2:
- * DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_0);
- * DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_1);
- * DSPI_MasterWriteDataBlocking(base,&command,data_need_to_send_2);
- *
- * param base DSPI peripheral address.
- * param data The data word (command and data combined) to be sent.
- */
- void DSPI_MasterWriteCommandDataBlocking(SPI_Type *base, uint32_t data)
- {
- /* First, clear Transmit Complete Flag (TCF) */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxCompleteFlag);
-
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- }
-
- base->PUSHR = data;
-
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
-
- /* Wait till TCF sets */
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxCompleteFlag))
- {
- }
- }
-
- /*!
- * brief Writes data into the data buffer in slave mode, waits till data was transmitted, and returns.
- *
- * In slave mode, up to 16-bit words may be written. The function first clears the transmit complete flag, writes data
- * into data register, and finally waits until the data is transmitted.
- *
- * param base DSPI peripheral address.
- * param data The data to send.
- */
- void DSPI_SlaveWriteDataBlocking(SPI_Type *base, uint32_t data)
- {
- /* First, clear Transmit Complete Flag (TCF) */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxCompleteFlag);
-
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- }
-
- base->PUSHR_SLAVE = data;
-
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
-
- /* Wait till TCF sets */
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxCompleteFlag))
- {
- }
- }
-
- /*!
- * brief Enables the DSPI interrupts.
- *
- * This function configures the various interrupt masks of the DSPI. The parameters are a base and an interrupt mask.
- * Note, for Tx Fill and Rx FIFO drain requests, enable the interrupt request and disable the DMA request.
- * Do not use this API(write to RSER register) while DSPI is in running state.
- *
- * code
- * DSPI_EnableInterrupts(base, kDSPI_TxCompleteInterruptEnable | kDSPI_EndOfQueueInterruptEnable );
- * endcode
- *
- * param base DSPI peripheral address.
- * param mask The interrupt mask; use the enum _dspi_interrupt_enable.
- */
- void DSPI_EnableInterrupts(SPI_Type *base, uint32_t mask)
- {
- if (0U != (mask & SPI_RSER_TFFF_RE_MASK))
- {
- base->RSER &= ~SPI_RSER_TFFF_DIRS_MASK;
- }
- if (0U != (mask & SPI_RSER_RFDF_RE_MASK))
- {
- base->RSER &= ~SPI_RSER_RFDF_DIRS_MASK;
- }
- base->RSER |= mask;
- }
-
- /*Transactional APIs -- Master*/
-
- /*!
- * brief Initializes the DSPI master handle.
- *
- * This function initializes the DSPI handle, which can be used for other DSPI transactional APIs. Usually, for a
- * specified DSPI instance, call this API once to get the initialized handle.
- *
- * param base DSPI peripheral base address.
- * param handle DSPI handle pointer to dspi_master_handle_t.
- * param callback DSPI callback.
- * param userData Callback function parameter.
- */
- void DSPI_MasterTransferCreateHandle(SPI_Type *base,
- dspi_master_handle_t *handle,
- dspi_master_transfer_callback_t callback,
- void *userData)
- {
- assert(NULL != handle);
-
- /* Zero the handle. */
- (void)memset(handle, 0, sizeof(*handle));
-
- g_dspiHandle[DSPI_GetInstance(base)] = handle;
-
- handle->callback = callback;
- handle->userData = userData;
- }
-
- /*!
- * brief DSPI master transfer data using polling.
- *
- * This function transfers data using polling. This is a blocking function, which does not return until all transfers
- * have been completed.
- *
- * param base DSPI peripheral base address.
- * param transfer Pointer to the dspi_transfer_t structure.
- * return status of status_t.
- */
- status_t DSPI_MasterTransferBlocking(SPI_Type *base, dspi_transfer_t *transfer)
- {
- assert(NULL != transfer);
-
- uint16_t wordToSend = 0;
- uint16_t wordReceived = 0;
- uint8_t dummyData = DSPI_GetDummyDataInstance(base);
- uint8_t bitsPerFrame;
-
- uint32_t command;
- uint32_t lastCommand;
-
- uint8_t *txData;
- uint8_t *rxData;
- uint32_t remainingSendByteCount;
- uint32_t remainingReceiveByteCount;
-
- uint32_t fifoSize;
- uint32_t tmpMCR = 0;
- dspi_command_data_config_t commandStruct;
-
- /* If the transfer count is zero, then return immediately.*/
- if (transfer->dataSize == 0U)
- {
- return kStatus_InvalidArgument;
- }
-
- DSPI_StopTransfer(base);
- DSPI_DisableInterrupts(base, (uint32_t)kDSPI_AllInterruptEnable);
- DSPI_FlushFifo(base, true, true);
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
-
- /*Calculate the command and lastCommand*/
- commandStruct.whichPcs =
- (uint8_t)((uint32_t)1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
- commandStruct.isEndOfQueue = false;
- commandStruct.clearTransferCount = false;
- commandStruct.whichCtar = (uint8_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
- commandStruct.isPcsContinuous =
- (0U != (transfer->configFlags & (uint32_t)kDSPI_MasterPcsContinuous)) ? true : false;
-
- command = DSPI_MasterGetFormattedCommand(&(commandStruct));
-
- commandStruct.isEndOfQueue = true;
- commandStruct.isPcsContinuous =
- (0U != (transfer->configFlags & (uint32_t)kDSPI_MasterActiveAfterTransfer)) ? true : false;
- lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
-
- /*Calculate the bitsPerFrame*/
- bitsPerFrame = (uint8_t)(((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1U);
-
- txData = transfer->txData;
- rxData = transfer->rxData;
- remainingSendByteCount = transfer->dataSize;
- remainingReceiveByteCount = transfer->dataSize;
-
- tmpMCR = base->MCR;
- if ((0U != (tmpMCR & SPI_MCR_DIS_RXF_MASK)) || (0U != (tmpMCR & SPI_MCR_DIS_TXF_MASK)))
- {
- fifoSize = 1U;
- }
- else
- {
- fifoSize = (uint32_t)FSL_FEATURE_DSPI_FIFO_SIZEn(base);
- }
-
- DSPI_StartTransfer(base);
-
- if (bitsPerFrame <= 8U)
- {
- while (remainingSendByteCount > 0U)
- {
- if (remainingSendByteCount == 1U)
- {
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- }
-
- if (txData != NULL)
- {
- base->PUSHR = (*txData) | (lastCommand);
- txData++;
- }
- else
- {
- base->PUSHR = (lastCommand) | (dummyData);
- }
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- remainingSendByteCount--;
-
- while (remainingReceiveByteCount > 0U)
- {
- if ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
- (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
- {
- if (rxData != NULL)
- {
- /* Read data from POPR*/
- *(rxData) = (uint8_t)DSPI_ReadData(base);
- rxData++;
- }
- else
- {
- (void)DSPI_ReadData(base);
- }
- remainingReceiveByteCount--;
-
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
- }
- }
- }
- else
- {
- /*Wait until Tx Fifo is not full*/
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- }
- if (txData != NULL)
- {
- base->PUSHR = command | (uint16_t)(*txData);
- txData++;
- }
- else
- {
- base->PUSHR = command | dummyData;
- }
- remainingSendByteCount--;
-
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
-
- while ((remainingReceiveByteCount - remainingSendByteCount) >= fifoSize)
- {
- if ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
- (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
- {
- if (rxData != NULL)
- {
- *(rxData) = (uint8_t)DSPI_ReadData(base);
- rxData++;
- }
- else
- {
- (void)DSPI_ReadData(base);
- }
- remainingReceiveByteCount--;
-
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
- }
- }
- }
- }
- }
- else
- {
- while (remainingSendByteCount > 0U)
- {
- if (remainingSendByteCount <= 2U)
- {
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- }
-
- if (txData != NULL)
- {
- wordToSend = *(txData);
- ++txData;
-
- if (remainingSendByteCount > 1U)
- {
- wordToSend |= (uint16_t)(*(txData)) << 8U;
- ++txData;
- }
- }
- else
- {
- wordToSend = dummyData;
- }
-
- base->PUSHR = lastCommand | wordToSend;
-
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- remainingSendByteCount = 0;
-
- while (remainingReceiveByteCount > 0U)
- {
- if ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
- (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
- {
- wordReceived = (uint16_t)DSPI_ReadData(base);
-
- if (remainingReceiveByteCount != 1U)
- {
- if (rxData != NULL)
- {
- *(rxData) = (uint8_t)wordReceived;
- ++rxData;
- *(rxData) = (uint8_t)(wordReceived >> 8U);
- ++rxData;
- }
- remainingReceiveByteCount -= 2U;
- }
- else
- {
- if (rxData != NULL)
- {
- *(rxData) = (uint8_t)wordReceived;
- ++rxData;
- }
- remainingReceiveByteCount--;
- }
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
- }
- }
- }
- else
- {
- /*Wait until Tx Fifo is not full*/
- while (0U == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- }
-
- if (txData != NULL)
- {
- wordToSend = *(txData);
- ++txData;
- wordToSend |= (uint16_t)(*(txData)) << 8U;
- ++txData;
- }
- else
- {
- wordToSend = dummyData;
- }
- base->PUSHR = command | wordToSend;
- remainingSendByteCount -= 2U;
-
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
-
- while (((remainingReceiveByteCount - remainingSendByteCount) / 2U) >= fifoSize)
- {
- if ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
- (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
- {
- wordReceived = (uint16_t)DSPI_ReadData(base);
-
- if (rxData != NULL)
- {
- *rxData = (uint8_t)wordReceived;
- ++rxData;
- *rxData = (uint8_t)(wordReceived >> 8U);
- ++rxData;
- }
- remainingReceiveByteCount -= 2U;
-
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
- }
- }
- }
- }
- }
-
- return kStatus_Success;
- }
-
- static void DSPI_MasterTransferPrepare(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
- {
- assert(NULL != handle);
- assert(NULL != transfer);
-
- uint32_t tmpMCR = 0;
- dspi_command_data_config_t commandStruct = {false, (uint8_t)kDSPI_Ctar0, (uint8_t)kDSPI_Pcs0, false, false};
-
- DSPI_StopTransfer(base);
- DSPI_FlushFifo(base, true, true);
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
-
- commandStruct.whichPcs =
- (uint8_t)((uint32_t)1U << ((transfer->configFlags & DSPI_MASTER_PCS_MASK) >> DSPI_MASTER_PCS_SHIFT));
- commandStruct.isEndOfQueue = false;
- commandStruct.clearTransferCount = false;
- commandStruct.whichCtar = (uint8_t)((transfer->configFlags & DSPI_MASTER_CTAR_MASK) >> DSPI_MASTER_CTAR_SHIFT);
- commandStruct.isPcsContinuous =
- (0U != (transfer->configFlags & (uint32_t)kDSPI_MasterPcsContinuous)) ? true : false;
- handle->command = DSPI_MasterGetFormattedCommand(&(commandStruct));
-
- commandStruct.isEndOfQueue = true;
- commandStruct.isPcsContinuous =
- (0U != (transfer->configFlags & (uint32_t)kDSPI_MasterActiveAfterTransfer)) ? true : false;
- handle->lastCommand = DSPI_MasterGetFormattedCommand(&(commandStruct));
-
- handle->bitsPerFrame = ((base->CTAR[commandStruct.whichCtar] & SPI_CTAR_FMSZ_MASK) >> SPI_CTAR_FMSZ_SHIFT) + 1U;
-
- tmpMCR = base->MCR;
- if ((0U != (tmpMCR & SPI_MCR_DIS_RXF_MASK)) || (0U != (tmpMCR & SPI_MCR_DIS_TXF_MASK)))
- {
- handle->fifoSize = 1U;
- }
- else
- {
- handle->fifoSize = (uint8_t)FSL_FEATURE_DSPI_FIFO_SIZEn(base);
- }
- handle->txData = transfer->txData;
- handle->rxData = transfer->rxData;
- handle->remainingSendByteCount = transfer->dataSize;
- handle->remainingReceiveByteCount = transfer->dataSize;
- handle->totalByteCount = transfer->dataSize;
- }
-
- /*!
- * brief DSPI master transfer data using interrupts.
- *
- * This function transfers data using interrupts. This is a non-blocking function, which returns right away. When all
- * data is transferred, the callback function is called.
-
- * param base DSPI peripheral base address.
- * param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
- * param transfer Pointer to the dspi_transfer_t structure.
- * return status of status_t.
- */
- status_t DSPI_MasterTransferNonBlocking(SPI_Type *base, dspi_master_handle_t *handle, dspi_transfer_t *transfer)
- {
- assert(NULL != handle);
- assert(NULL != transfer);
-
- /* If the transfer count is zero, then return immediately.*/
- if (transfer->dataSize == 0U)
- {
- return kStatus_InvalidArgument;
- }
-
- /* Check that we're not busy.*/
- if (handle->state == (uint8_t)kDSPI_Busy)
- {
- return kStatus_DSPI_Busy;
- }
-
- handle->state = (uint8_t)kDSPI_Busy;
-
- /* Disable the NVIC for DSPI peripheral. */
- (void)DisableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
-
- DSPI_MasterTransferPrepare(base, handle, transfer);
-
- /* RX FIFO Drain request: RFDF_RE to enable RFDF interrupt
- * Since SPI is a synchronous interface, we only need to enable the RX interrupt.
- * The IRQ handler will get the status of RX and TX interrupt flags.
- */
- s_dspiMasterIsr = DSPI_MasterTransferHandleIRQ;
-
- DSPI_EnableInterrupts(base, (uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable);
- DSPI_StartTransfer(base);
-
- /* Fill up the Tx FIFO to trigger the transfer. */
- DSPI_MasterTransferFillUpTxFifo(base, handle);
-
- /* Enable the NVIC for DSPI peripheral. */
- (void)EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
-
- return kStatus_Success;
- }
-
- /*!
- * brief Transfers a block of data using a polling method.
- *
- * This function will do a half-duplex transfer for DSPI master, This is a blocking function,
- * which does not retuen until all transfer have been completed. And data transfer will be half-duplex,
- * users can set transmit first or receive first.
- *
- * param base DSPI base pointer
- * param xfer pointer to dspi_half_duplex_transfer_t structure
- * return status of status_t.
- */
- status_t DSPI_MasterHalfDuplexTransferBlocking(SPI_Type *base, dspi_half_duplex_transfer_t *xfer)
- {
- assert(NULL != xfer);
-
- dspi_transfer_t tempXfer = {0};
- status_t status;
-
- if (true == xfer->isTransmitFirst)
- {
- tempXfer.txData = xfer->txData;
- tempXfer.rxData = NULL;
- tempXfer.dataSize = xfer->txDataSize;
- }
- else
- {
- tempXfer.txData = NULL;
- tempXfer.rxData = xfer->rxData;
- tempXfer.dataSize = xfer->rxDataSize;
- }
- /* If the pcs pin keep assert between transmit and receive. */
- if (true == xfer->isPcsAssertInTransfer)
- {
- tempXfer.configFlags = (xfer->configFlags) | (uint32_t)kDSPI_MasterActiveAfterTransfer;
- }
- else
- {
- tempXfer.configFlags = (xfer->configFlags) & (~(uint32_t)kDSPI_MasterActiveAfterTransfer);
- }
-
- status = DSPI_MasterTransferBlocking(base, &tempXfer);
- if (status != kStatus_Success)
- {
- return status;
- }
-
- if (true == xfer->isTransmitFirst)
- {
- tempXfer.txData = NULL;
- tempXfer.rxData = xfer->rxData;
- tempXfer.dataSize = xfer->rxDataSize;
- }
- else
- {
- tempXfer.txData = xfer->txData;
- tempXfer.rxData = NULL;
- tempXfer.dataSize = xfer->txDataSize;
- }
- tempXfer.configFlags = xfer->configFlags;
-
- /* DSPI transfer blocking. */
- status = DSPI_MasterTransferBlocking(base, &tempXfer);
-
- return status;
- }
-
- /*!
- * brief Performs a non-blocking DSPI interrupt transfer.
- *
- * This function transfers data using interrupts, the transfer mechanism is half-duplex. This is a non-blocking
- * function,
- * which returns right away. When all data is transferred, the callback function is called.
- *
- * param base DSPI peripheral base address.
- * param handle pointer to dspi_master_handle_t structure which stores the transfer state
- * param xfer pointer to dspi_half_duplex_transfer_t structure
- * return status of status_t.
- */
- status_t DSPI_MasterHalfDuplexTransferNonBlocking(SPI_Type *base,
- dspi_master_handle_t *handle,
- dspi_half_duplex_transfer_t *xfer)
- {
- assert(NULL != xfer);
- assert(NULL != handle);
- dspi_transfer_t tempXfer = {0};
- status_t status;
-
- if (true == xfer->isTransmitFirst)
- {
- tempXfer.txData = xfer->txData;
- tempXfer.rxData = NULL;
- tempXfer.dataSize = xfer->txDataSize;
- }
- else
- {
- tempXfer.txData = NULL;
- tempXfer.rxData = xfer->rxData;
- tempXfer.dataSize = xfer->rxDataSize;
- }
- /* If the pcs pin keep assert between transmit and receive. */
- if (true == xfer->isPcsAssertInTransfer)
- {
- tempXfer.configFlags = (xfer->configFlags) | (uint32_t)kDSPI_MasterActiveAfterTransfer;
- }
- else
- {
- tempXfer.configFlags = (xfer->configFlags) & (~(uint32_t)kDSPI_MasterActiveAfterTransfer);
- }
-
- status = DSPI_MasterTransferBlocking(base, &tempXfer);
- if (status != kStatus_Success)
- {
- return status;
- }
-
- if (true == xfer->isTransmitFirst)
- {
- tempXfer.txData = NULL;
- tempXfer.rxData = xfer->rxData;
- tempXfer.dataSize = xfer->rxDataSize;
- }
- else
- {
- tempXfer.txData = xfer->txData;
- tempXfer.rxData = NULL;
- tempXfer.dataSize = xfer->txDataSize;
- }
- tempXfer.configFlags = xfer->configFlags;
-
- status = DSPI_MasterTransferNonBlocking(base, handle, &tempXfer);
-
- return status;
- }
-
- /*!
- * brief Gets the master transfer count.
- *
- * This function gets the master transfer count.
- *
- * param base DSPI peripheral base address.
- * param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
- * param count The number of bytes transferred by using the non-blocking transaction.
- * return status of status_t.
- */
- status_t DSPI_MasterTransferGetCount(SPI_Type *base, dspi_master_handle_t *handle, size_t *count)
- {
- assert(NULL != handle);
-
- if (NULL == count)
- {
- return kStatus_InvalidArgument;
- }
-
- /* Catch when there is not an active transfer. */
- if (handle->state != (uint8_t)kDSPI_Busy)
- {
- *count = 0;
- return kStatus_NoTransferInProgress;
- }
-
- *count = handle->totalByteCount - handle->remainingReceiveByteCount;
- return kStatus_Success;
- }
-
- static void DSPI_MasterTransferComplete(SPI_Type *base, dspi_master_handle_t *handle)
- {
- assert(NULL != handle);
-
- /* Disable interrupt requests*/
- DSPI_DisableInterrupts(
- base, ((uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable | (uint32_t)kDSPI_TxFifoFillRequestInterruptEnable));
-
- status_t status = 0;
- if (handle->state == (uint8_t)kDSPI_Error)
- {
- status = kStatus_DSPI_Error;
- }
- else
- {
- status = kStatus_Success;
- }
-
- if ((NULL != handle->callback) && ((uint8_t)kDSPI_Idle != handle->state))
- {
- handle->state = (uint8_t)kDSPI_Idle;
- handle->callback(base, handle, status, handle->userData);
- }
- }
-
- static void DSPI_MasterTransferFillUpTxFifo(SPI_Type *base, dspi_master_handle_t *handle)
- {
- assert(NULL != handle);
-
- uint16_t wordToSend = 0;
- uint8_t dummyData = DSPI_GetDummyDataInstance(base);
- size_t tmpRemainingSendByteCount = handle->remainingSendByteCount;
- size_t tmpRemainingReceiveByteCount = handle->remainingReceiveByteCount;
- uint8_t tmpFifoSize = handle->fifoSize;
-
- /* If bits/frame is greater than one byte */
- if (handle->bitsPerFrame > 8U)
- {
- /* Fill the fifo until it is full or until the send word count is 0 or until the difference
- * between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
- * The reason for checking the difference is to ensure we only send as much as the
- * RX FIFO can receive.
- * For this case where bitsPerFrame > 8, each entry in the FIFO contains 2 bytes of the
- * send data, hence the difference between the remainingReceiveByteCount and
- * remainingSendByteCount must be divided by 2 to convert this difference into a
- * 16-bit (2 byte) value.
- */
- while ((0U != (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag)) &&
- (((tmpRemainingReceiveByteCount - tmpRemainingSendByteCount) / 2U) < tmpFifoSize))
- {
- if (handle->remainingSendByteCount <= 2U)
- {
- if (NULL != handle->txData)
- {
- if (handle->remainingSendByteCount == 1U)
- {
- wordToSend = *(handle->txData);
- }
- else
- {
- wordToSend = *(handle->txData);
- ++handle->txData; /* increment to next data byte */
- wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
- }
- }
- else
- {
- wordToSend = dummyData;
- }
- handle->remainingSendByteCount = 0;
- base->PUSHR = handle->lastCommand | wordToSend;
- }
- /* For all words except the last word */
- else
- {
- if (NULL != handle->txData)
- {
- wordToSend = *(handle->txData);
- ++handle->txData; /* increment to next data byte */
- wordToSend |= (uint16_t)(*(handle->txData)) << 8U;
- ++handle->txData; /* increment to next data byte */
- }
- else
- {
- wordToSend = dummyData;
- }
- handle->remainingSendByteCount -= 2U; /* decrement remainingSendByteCount by 2 */
- base->PUSHR = handle->command | wordToSend;
- }
-
- /* Try to clear the TFFF; if the TX FIFO is full this will clear */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
-
- /* exit loop if send count is zero, else update local variables for next loop.
- * If this is the first time write to the PUSHR, write only once.
- */
- tmpRemainingSendByteCount = handle->remainingSendByteCount;
- if ((tmpRemainingSendByteCount == 0U) || (tmpRemainingSendByteCount == handle->totalByteCount - 2U))
- {
- break;
- }
- tmpRemainingReceiveByteCount = handle->remainingReceiveByteCount;
- tmpRemainingSendByteCount = handle->remainingSendByteCount;
- tmpFifoSize = handle->fifoSize;
- } /* End of TX FIFO fill while loop */
- }
- /* Optimized for bits/frame less than or equal to one byte. */
- else
- {
- /* Fill the fifo until it is full or until the send word count is 0 or until the difference
- * between the remainingReceiveByteCount and remainingSendByteCount equals the FIFO depth.
- * The reason for checking the difference is to ensure we only send as much as the
- * RX FIFO can receive.
- */
- while ((0U != (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag)) &&
- ((tmpRemainingReceiveByteCount - tmpRemainingSendByteCount) < tmpFifoSize))
- {
- if (NULL != handle->txData)
- {
- wordToSend = *(handle->txData);
- ++handle->txData;
- }
- else
- {
- wordToSend = dummyData;
- }
-
- if (handle->remainingSendByteCount == 1U)
- {
- base->PUSHR = handle->lastCommand | wordToSend;
- }
- else
- {
- base->PUSHR = handle->command | wordToSend;
- }
-
- /* Try to clear the TFFF; if the TX FIFO is full this will clear */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
-
- --handle->remainingSendByteCount;
-
- /* exit loop if send count is zero, else update local variables for next loop
- * If this is the first time write to the PUSHR, write only once.
- */
- tmpRemainingSendByteCount = handle->remainingSendByteCount;
- if ((tmpRemainingSendByteCount == 0U) || (tmpRemainingSendByteCount == (handle->totalByteCount - 1U)))
- {
- break;
- }
- tmpRemainingReceiveByteCount = handle->remainingReceiveByteCount;
- tmpRemainingSendByteCount = handle->remainingSendByteCount;
- tmpFifoSize = handle->fifoSize;
- }
- }
- }
-
- /*!
- * brief DSPI master aborts a transfer using an interrupt.
- *
- * This function aborts a transfer using an interrupt.
- *
- * param base DSPI peripheral base address.
- * param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
- */
- void DSPI_MasterTransferAbort(SPI_Type *base, dspi_master_handle_t *handle)
- {
- assert(NULL != handle);
-
- DSPI_StopTransfer(base);
-
- /* Disable interrupt requests*/
- DSPI_DisableInterrupts(
- base, ((uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable | (uint32_t)kDSPI_TxFifoFillRequestInterruptEnable));
-
- handle->state = (uint8_t)kDSPI_Idle;
- }
-
- /*!
- * brief DSPI Master IRQ handler function.
- *
- * This function processes the DSPI transmit and receive IRQ.
-
- * param base DSPI peripheral base address.
- * param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
- */
- void DSPI_MasterTransferHandleIRQ(SPI_Type *base, dspi_master_handle_t *handle)
- {
- assert(NULL != handle);
-
- /* RECEIVE IRQ handler: Check read buffer only if there are remaining bytes to read. */
- if (0U != (handle->remainingReceiveByteCount))
- {
- /* Check read buffer.*/
- uint16_t wordReceived; /* Maximum supported data bit length in master mode is 16-bits */
-
- /* If bits/frame is greater than one byte */
- if (handle->bitsPerFrame > 8U)
- {
- while ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
- (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
- {
- wordReceived = (uint16_t)DSPI_ReadData(base);
- /* clear the rx fifo drain request, needed for non-DMA applications as this flag
- * will remain set even if the rx fifo is empty. By manually clearing this flag, it
- * either remain clear if no more data is in the fifo, or it will set if there is
- * more data in the fifo.
- */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
-
- /* Store read bytes into rx buffer only if a buffer pointer was provided */
- if (NULL != handle->rxData)
- {
- /* For the last word received, if there is an extra byte due to the odd transfer
- * byte count, only save the last byte and discard the upper byte
- */
- if (handle->remainingReceiveByteCount == 1U)
- {
- *handle->rxData = (uint8_t)wordReceived; /* Write first data byte */
- --handle->remainingReceiveByteCount;
- }
- else
- {
- *handle->rxData = (uint8_t)wordReceived; /* Write first data byte */
- ++handle->rxData; /* increment to next data byte */
- *handle->rxData = (uint8_t)(wordReceived >> 8U); /* Write second data byte */
- ++handle->rxData; /* increment to next data byte */
- handle->remainingReceiveByteCount -= 2U;
- }
- }
- else
- {
- if (handle->remainingReceiveByteCount == 1U)
- {
- --handle->remainingReceiveByteCount;
- }
- else
- {
- handle->remainingReceiveByteCount -= 2U;
- }
- }
- if (handle->remainingReceiveByteCount == 0U)
- {
- break;
- }
- } /* End of RX FIFO drain while loop */
- }
- /* Optimized for bits/frame less than or equal to one byte. */
- else
- {
- while ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
- (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
- {
- wordReceived = (uint16_t)DSPI_ReadData(base);
- /* clear the rx fifo drain request, needed for non-DMA applications as this flag
- * will remain set even if the rx fifo is empty. By manually clearing this flag, it
- * either remain clear if no more data is in the fifo, or it will set if there is
- * more data in the fifo.
- */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
-
- /* Store read bytes into rx buffer only if a buffer pointer was provided */
- if (NULL != handle->rxData)
- {
- *handle->rxData = (uint8_t)wordReceived;
- ++handle->rxData;
- }
-
- --handle->remainingReceiveByteCount;
-
- if (handle->remainingReceiveByteCount == 0U)
- {
- break;
- }
- } /* End of RX FIFO drain while loop */
- }
- }
-
- /* Check write buffer. We always have to send a word in order to keep the transfer
- * moving. So if the caller didn't provide a send buffer, we just send a zero.
- */
- if (0U != (handle->remainingSendByteCount))
- {
- DSPI_MasterTransferFillUpTxFifo(base, handle);
- }
-
- /* Check if we're done with this transfer.*/
- if (handle->remainingSendByteCount == 0U)
- {
- if (handle->remainingReceiveByteCount == 0U)
- {
- /* Complete the transfer and disable the interrupts */
- DSPI_MasterTransferComplete(base, handle);
- }
- }
- }
-
- /*Transactional APIs -- Slave*/
- /*!
- * brief Initializes the DSPI slave handle.
- *
- * This function initializes the DSPI handle, which can be used for other DSPI transactional APIs. Usually, for a
- * specified DSPI instance, call this API once to get the initialized handle.
- *
- * param handle DSPI handle pointer to the dspi_slave_handle_t.
- * param base DSPI peripheral base address.
- * param callback DSPI callback.
- * param userData Callback function parameter.
- */
- void DSPI_SlaveTransferCreateHandle(SPI_Type *base,
- dspi_slave_handle_t *handle,
- dspi_slave_transfer_callback_t callback,
- void *userData)
- {
- assert(NULL != handle);
-
- /* Zero the handle. */
- (void)memset(handle, 0, sizeof(*handle));
-
- g_dspiHandle[DSPI_GetInstance(base)] = handle;
-
- handle->callback = callback;
- handle->userData = userData;
- }
-
- /*!
- * brief DSPI slave transfers data using an interrupt.
- *
- * This function transfers data using an interrupt. This is a non-blocking function, which returns right away. When all
- * data is transferred, the callback function is called.
- *
- * param base DSPI peripheral base address.
- * param handle Pointer to the dspi_slave_handle_t structure which stores the transfer state.
- * param transfer Pointer to the dspi_transfer_t structure.
- * return status of status_t.
- */
- status_t DSPI_SlaveTransferNonBlocking(SPI_Type *base, dspi_slave_handle_t *handle, dspi_transfer_t *transfer)
- {
- assert(NULL != handle);
- assert(NULL != transfer);
-
- /* If receive length is zero */
- if (transfer->dataSize == 0U)
- {
- return kStatus_InvalidArgument;
- }
-
- /* If both send buffer and receive buffer is null */
- if ((NULL == (transfer->txData)) && (NULL == (transfer->rxData)))
- {
- return kStatus_InvalidArgument;
- }
-
- /* Check that we're not busy.*/
- if (handle->state == (uint8_t)kDSPI_Busy)
- {
- return kStatus_DSPI_Busy;
- }
- handle->state = (uint8_t)kDSPI_Busy;
-
- /* Enable the NVIC for DSPI peripheral. */
- (void)EnableIRQ(s_dspiIRQ[DSPI_GetInstance(base)]);
-
- /* Store transfer information */
- handle->txData = transfer->txData;
- handle->rxData = transfer->rxData;
- handle->remainingSendByteCount = transfer->dataSize;
- handle->remainingReceiveByteCount = transfer->dataSize;
- handle->totalByteCount = transfer->dataSize;
-
- handle->errorCount = 0;
-
- uint8_t whichCtar = (uint8_t)((transfer->configFlags & DSPI_SLAVE_CTAR_MASK) >> DSPI_SLAVE_CTAR_SHIFT);
- handle->bitsPerFrame =
- (((base->CTAR_SLAVE[whichCtar]) & SPI_CTAR_SLAVE_FMSZ_MASK) >> SPI_CTAR_SLAVE_FMSZ_SHIFT) + 1U;
-
- DSPI_StopTransfer(base);
-
- DSPI_FlushFifo(base, true, true);
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_AllStatusFlag);
-
- s_dspiSlaveIsr = DSPI_SlaveTransferHandleIRQ;
-
- /* Enable RX FIFO drain request, the slave only use this interrupt */
- DSPI_EnableInterrupts(base, (uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable);
-
- if (NULL != handle->rxData)
- {
- /* RX FIFO overflow request enable */
- DSPI_EnableInterrupts(base, (uint32_t)kDSPI_RxFifoOverflowInterruptEnable);
- }
- if (NULL != handle->txData)
- {
- /* TX FIFO underflow request enable */
- DSPI_EnableInterrupts(base, (uint32_t)kDSPI_TxFifoUnderflowInterruptEnable);
- }
-
- DSPI_StartTransfer(base);
-
- /* Prepare data to transmit */
- DSPI_SlaveTransferFillUpTxFifo(base, handle);
-
- return kStatus_Success;
- }
-
- /*!
- * brief Gets the slave transfer count.
- *
- * This function gets the slave transfer count.
- *
- * param base DSPI peripheral base address.
- * param handle Pointer to the dspi_master_handle_t structure which stores the transfer state.
- * param count The number of bytes transferred by using the non-blocking transaction.
- * return status of status_t.
- */
- status_t DSPI_SlaveTransferGetCount(SPI_Type *base, dspi_slave_handle_t *handle, size_t *count)
- {
- assert(NULL != handle);
-
- if (NULL == count)
- {
- return kStatus_InvalidArgument;
- }
-
- /* Catch when there is not an active transfer. */
- if (handle->state != (uint8_t)kDSPI_Busy)
- {
- *count = 0;
- return kStatus_NoTransferInProgress;
- }
-
- *count = handle->totalByteCount - handle->remainingReceiveByteCount;
- return kStatus_Success;
- }
-
- static void DSPI_SlaveTransferFillUpTxFifo(SPI_Type *base, dspi_slave_handle_t *handle)
- {
- assert(NULL != handle);
-
- uint16_t transmitData = 0;
- uint8_t dummyPattern = DSPI_GetDummyDataInstance(base);
-
- /* Service the transmitter, if transmit buffer provided, transmit the data,
- * else transmit dummy pattern
- */
- while ((uint32_t)kDSPI_TxFifoFillRequestFlag == (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoFillRequestFlag))
- {
- /* Transmit data */
- if (handle->remainingSendByteCount > 0U)
- {
- /* Have data to transmit, update the transmit data and push to FIFO */
- if (handle->bitsPerFrame <= 8U)
- {
- /* bits/frame is 1 byte */
- if (NULL != handle->txData)
- {
- /* Update transmit data and transmit pointer */
- transmitData = *handle->txData;
- handle->txData++;
- }
- else
- {
- transmitData = dummyPattern;
- }
-
- /* Decrease remaining dataSize */
- --handle->remainingSendByteCount;
- }
- /* bits/frame is 2 bytes */
- else
- {
- /* With multibytes per frame transmission, the transmit frame contains data from
- * transmit buffer until sent dataSize matches user request. Other bytes will set to
- * dummy pattern value.
- */
- if (NULL != handle->txData)
- {
- /* Update first byte of transmit data and transmit pointer */
- transmitData = *handle->txData;
- handle->txData++;
-
- if (handle->remainingSendByteCount == 1U)
- {
- /* Decrease remaining dataSize */
- --handle->remainingSendByteCount;
- /* Update second byte of transmit data to second byte of dummy pattern */
- transmitData = transmitData | (uint16_t)(((uint16_t)dummyPattern) << 8U);
- }
- else
- {
- /* Update second byte of transmit data and transmit pointer */
- transmitData = transmitData | (uint16_t)((uint16_t)(*handle->txData) << 8U);
- handle->txData++;
- handle->remainingSendByteCount -= 2U;
- }
- }
- else
- {
- if (handle->remainingSendByteCount == 1U)
- {
- --handle->remainingSendByteCount;
- }
- else
- {
- handle->remainingSendByteCount -= 2U;
- }
- transmitData = (uint16_t)((uint16_t)(dummyPattern) << 8U) | dummyPattern;
- }
- }
- }
- else
- {
- break;
- }
-
- /* Write the data to the DSPI data register */
- base->PUSHR_SLAVE = transmitData;
-
- /* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
- }
- }
-
- static void DSPI_SlaveTransferComplete(SPI_Type *base, dspi_slave_handle_t *handle)
- {
- assert(NULL != handle);
-
- /* Disable interrupt requests */
- DSPI_DisableInterrupts(
- base, ((uint32_t)kDSPI_TxFifoUnderflowInterruptEnable | (uint32_t)kDSPI_TxFifoFillRequestInterruptEnable |
- (uint32_t)kDSPI_RxFifoOverflowInterruptEnable | (uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable));
-
- /* The transfer is complete. */
- handle->txData = NULL;
- handle->rxData = NULL;
- handle->remainingReceiveByteCount = 0;
- handle->remainingSendByteCount = 0;
-
- status_t status;
- if (handle->state == (uint8_t)kDSPI_Error)
- {
- status = kStatus_DSPI_Error;
- }
- else
- {
- status = kStatus_Success;
- }
-
- handle->state = (uint8_t)kDSPI_Idle;
-
- if (NULL != handle->callback)
- {
- handle->callback(base, handle, status, handle->userData);
- }
- }
-
- /*!
- * brief DSPI slave aborts a transfer using an interrupt.
- *
- * This function aborts a transfer using an interrupt.
- *
- * param base DSPI peripheral base address.
- * param handle Pointer to the dspi_slave_handle_t structure which stores the transfer state.
- */
- void DSPI_SlaveTransferAbort(SPI_Type *base, dspi_slave_handle_t *handle)
- {
- assert(NULL != handle);
-
- DSPI_StopTransfer(base);
-
- /* Disable interrupt requests */
- DSPI_DisableInterrupts(
- base, ((uint32_t)kDSPI_TxFifoUnderflowInterruptEnable | (uint32_t)kDSPI_TxFifoFillRequestInterruptEnable |
- (uint32_t)kDSPI_RxFifoOverflowInterruptEnable | (uint32_t)kDSPI_RxFifoDrainRequestInterruptEnable));
-
- handle->state = (uint8_t)kDSPI_Idle;
- handle->remainingSendByteCount = 0;
- handle->remainingReceiveByteCount = 0;
- }
-
- /*!
- * brief DSPI Master IRQ handler function.
- *
- * This function processes the DSPI transmit and receive IRQ.
- *
- * param base DSPI peripheral base address.
- * param handle Pointer to the dspi_slave_handle_t structure which stores the transfer state.
- */
- void DSPI_SlaveTransferHandleIRQ(SPI_Type *base, dspi_slave_handle_t *handle)
- {
- assert(NULL != handle);
-
- uint8_t dummyPattern = DSPI_GetDummyDataInstance(base);
- uint32_t dataReceived;
- uint32_t dataSend = 0;
- uint32_t tmpRemainingReceiveByteCount = 0;
-
- /* Because SPI protocol is synchronous, the number of bytes that that slave received from the
- * master is the actual number of bytes that the slave transmitted to the master. So we only
- * monitor the received dataSize to know when the transfer is complete.
- */
- if (handle->remainingReceiveByteCount > 0U)
- {
- while ((uint32_t)kDSPI_RxFifoDrainRequestFlag ==
- (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoDrainRequestFlag))
- {
- /* Have received data in the buffer. */
- dataReceived = base->POPR;
- /*Clear the rx fifo drain request, needed for non-DMA applications as this flag
- * will remain set even if the rx fifo is empty. By manually clearing this flag, it
- * either remain clear if no more data is in the fifo, or it will set if there is
- * more data in the fifo.
- */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoDrainRequestFlag);
-
- /* If bits/frame is one byte */
- if (handle->bitsPerFrame <= 8U)
- {
- if (NULL != handle->rxData)
- {
- /* Receive buffer is not null, store data into it */
- *handle->rxData = (uint8_t)dataReceived;
- ++handle->rxData;
- }
- /* Descrease remaining receive byte count */
- --handle->remainingReceiveByteCount;
-
- if (handle->remainingSendByteCount > 0U)
- {
- if (NULL != handle->txData)
- {
- dataSend = *handle->txData;
- ++handle->txData;
- }
- else
- {
- dataSend = dummyPattern;
- }
-
- --handle->remainingSendByteCount;
- /* Write the data to the DSPI data register */
- base->PUSHR_SLAVE = dataSend;
- }
- }
- else /* If bits/frame is 2 bytes */
- {
- /* With multibytes frame receiving, we only receive till the received dataSize
- * matches user request. Other bytes will be ignored.
- */
- if (NULL != handle->rxData)
- {
- /* Receive buffer is not null, store first byte into it */
- *handle->rxData = (uint8_t)dataReceived;
- ++handle->rxData;
-
- if (handle->remainingReceiveByteCount == 1U)
- {
- /* Decrease remaining receive byte count */
- --handle->remainingReceiveByteCount;
- }
- else
- {
- /* Receive buffer is not null, store second byte into it */
- *handle->rxData = (uint8_t)(dataReceived >> 8U);
- ++handle->rxData;
- handle->remainingReceiveByteCount -= 2U;
- }
- }
- /* If no handle->rxData*/
- else
- {
- if (handle->remainingReceiveByteCount == 1U)
- {
- /* Decrease remaining receive byte count */
- --handle->remainingReceiveByteCount;
- }
- else
- {
- handle->remainingReceiveByteCount -= 2U;
- }
- }
-
- if (handle->remainingSendByteCount > 0U)
- {
- if (NULL != handle->txData)
- {
- dataSend = *handle->txData;
- ++handle->txData;
-
- if (handle->remainingSendByteCount == 1U)
- {
- --handle->remainingSendByteCount;
- dataSend |= (uint16_t)((uint16_t)(dummyPattern) << 8U);
- }
- else
- {
- dataSend |= (uint32_t)(*handle->txData) << 8U;
- ++handle->txData;
- handle->remainingSendByteCount -= 2U;
- }
- }
- /* If no handle->txData*/
- else
- {
- if (handle->remainingSendByteCount == 1U)
- {
- --handle->remainingSendByteCount;
- }
- else
- {
- handle->remainingSendByteCount -= 2U;
- }
- dataSend = ((uint32_t)(dummyPattern) << 8U) | dummyPattern;
- }
- /* Write the data to the DSPI data register */
- base->PUSHR_SLAVE = dataSend;
- }
- }
- /* Try to clear TFFF by writing a one to it; it will not clear if TX FIFO not full */
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoFillRequestFlag);
-
- if (handle->remainingReceiveByteCount == 0U)
- {
- break;
- }
- }
- }
- /* Check if remaining receive byte count matches user request */
- tmpRemainingReceiveByteCount = handle->remainingReceiveByteCount;
- if ((handle->state == (uint8_t)(kDSPI_Error)) || (tmpRemainingReceiveByteCount == 0U))
- {
- /* Other cases, stop the transfer. */
- DSPI_SlaveTransferComplete(base, handle);
- return;
- }
-
- /* Catch tx fifo underflow conditions, service only if tx under flow interrupt enabled */
- if (0U != (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_TxFifoUnderflowFlag))
- {
- if (0U != (base->RSER & SPI_RSER_TFUF_RE_MASK))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_TxFifoUnderflowFlag);
- /* Change state to error and clear flag */
- if (NULL != handle->txData)
- {
- handle->state = (uint8_t)kDSPI_Error;
- }
- handle->errorCount++;
- }
- }
-
- /* Catch rx fifo overflow conditions, service only if rx over flow interrupt enabled */
- if (0U != (DSPI_GetStatusFlags(base) & (uint32_t)kDSPI_RxFifoOverflowFlag))
- {
- if (0U != (base->RSER & SPI_RSER_RFOF_RE_MASK))
- {
- DSPI_ClearStatusFlags(base, (uint32_t)kDSPI_RxFifoOverflowFlag);
- /* Change state to error and clear flag */
- if (NULL != handle->txData)
- {
- handle->state = (uint8_t)kDSPI_Error;
- }
- handle->errorCount++;
- }
- }
- }
-
- static void DSPI_CommonIRQHandler(SPI_Type *base, void *param)
- {
- if (DSPI_IsMaster(base))
- {
- s_dspiMasterIsr(base, (dspi_master_handle_t *)param);
- }
- else
- {
- s_dspiSlaveIsr(base, (dspi_slave_handle_t *)param);
- }
- SDK_ISR_EXIT_BARRIER;
- }
-
- #if defined(SPI0)
- void SPI0_DriverIRQHandler(void)
- {
- assert(NULL != g_dspiHandle[0]);
- DSPI_CommonIRQHandler(SPI0, g_dspiHandle[0]);
- }
- #endif
-
- #if defined(SPI1)
- void SPI1_DriverIRQHandler(void)
- {
- assert(NULL != g_dspiHandle[1]);
- DSPI_CommonIRQHandler(SPI1, g_dspiHandle[1]);
- }
- #endif
-
- #if defined(SPI2)
- void SPI2_DriverIRQHandler(void)
- {
- assert(NULL != g_dspiHandle[2]);
- DSPI_CommonIRQHandler(SPI2, g_dspiHandle[2]);
- }
- #endif
-
- #if defined(SPI3)
- void SPI3_DriverIRQHandler(void)
- {
- assert(NULL != g_dspiHandle[3]);
- DSPI_CommonIRQHandler(SPI3, g_dspiHandle[3]);
- }
- #endif
-
- #if defined(SPI4)
- void SPI4_DriverIRQHandler(void)
- {
- assert(NULL != g_dspiHandle[4]);
- DSPI_CommonIRQHandler(SPI4, g_dspiHandle[4]);
- }
- #endif
-
- #if defined(SPI5)
- void SPI5_DriverIRQHandler(void)
- {
- assert(NULL != g_dspiHandle[5]);
- DSPI_CommonIRQHandler(SPI5, g_dspiHandle[5]);
- }
- #endif
-
- #if (FSL_FEATURE_SOC_DSPI_COUNT > 6)
- #error "Should write the SPIx_DriverIRQHandler function that instance greater than 5 !"
- #endif
|