|
- /*
- * Copyright (c) 2015-2016, Freescale Semiconductor, Inc.
- * Copyright 2016-2020 NXP
- * All rights reserved.
- *
- * SPDX-License-Identifier: BSD-3-Clause
- */
-
- #include "fsl_uart.h"
-
- /*******************************************************************************
- * Definitions
- ******************************************************************************/
-
- /* Component ID definition, used by tools. */
- #ifndef FSL_COMPONENT_ID
- #define FSL_COMPONENT_ID "platform.drivers.uart"
- #endif
-
- /* UART transfer state. */
- enum
- {
- kUART_TxIdle, /* TX idle. */
- kUART_TxBusy, /* TX busy. */
- kUART_RxIdle, /* RX idle. */
- kUART_RxBusy, /* RX busy. */
- kUART_RxFramingError, /* Rx framing error */
- kUART_RxParityError /* Rx parity error */
- };
-
- /* Typedef for interrupt handler. */
- typedef void (*uart_isr_t)(UART_Type *base, uart_handle_t *handle);
-
- /*******************************************************************************
- * Prototypes
- ******************************************************************************/
- /*!
- * @brief Check whether the RX ring buffer is full.
- *
- * @param handle UART handle pointer.
- * @retval true RX ring buffer is full.
- * @retval false RX ring buffer is not full.
- */
- static bool UART_TransferIsRxRingBufferFull(uart_handle_t *handle);
-
- /*!
- * @brief Read RX register using non-blocking method.
- *
- * This function reads data from the TX register directly, upper layer must make
- * sure the RX register is full or TX FIFO has data before calling this function.
- *
- * @param base UART peripheral base address.
- * @param data Start address of the buffer to store the received data.
- * @param length Size of the buffer.
- */
- static void UART_ReadNonBlocking(UART_Type *base, uint8_t *data, size_t length);
-
- /*!
- * @brief Write to TX register using non-blocking method.
- *
- * This function writes data to the TX register directly, upper layer must make
- * sure the TX register is empty or TX FIFO has empty room before calling this function.
- *
- * @note This function does not check whether all the data has been sent out to bus,
- * so before disable TX, check kUART_TransmissionCompleteFlag to ensure the TX is
- * finished.
- *
- * @param base UART peripheral base address.
- * @param data Start address of the data to write.
- * @param length Size of the buffer to be sent.
- */
- static void UART_WriteNonBlocking(UART_Type *base, const uint8_t *data, size_t length);
-
- /*******************************************************************************
- * Variables
- ******************************************************************************/
- /* Array of UART handle. */
- #if (defined(UART5))
- #define UART_HANDLE_ARRAY_SIZE 6
- #else /* UART5 */
- #if (defined(UART4))
- #define UART_HANDLE_ARRAY_SIZE 5
- #else /* UART4 */
- #if (defined(UART3))
- #define UART_HANDLE_ARRAY_SIZE 4
- #else /* UART3 */
- #if (defined(UART2))
- #define UART_HANDLE_ARRAY_SIZE 3
- #else /* UART2 */
- #if (defined(UART1))
- #define UART_HANDLE_ARRAY_SIZE 2
- #else /* UART1 */
- #if (defined(UART0))
- #define UART_HANDLE_ARRAY_SIZE 1
- #else /* UART0 */
- #error No UART instance.
- #endif /* UART 0 */
- #endif /* UART 1 */
- #endif /* UART 2 */
- #endif /* UART 3 */
- #endif /* UART 4 */
- #endif /* UART 5 */
- static uart_handle_t *s_uartHandle[UART_HANDLE_ARRAY_SIZE];
- /* Array of UART peripheral base address. */
- static UART_Type *const s_uartBases[] = UART_BASE_PTRS;
-
- /* Array of UART IRQ number. */
- static const IRQn_Type s_uartIRQ[] = UART_RX_TX_IRQS;
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* Array of UART clock name. */
- static const clock_ip_name_t s_uartClock[] = UART_CLOCKS;
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-
- /* UART ISR for transactional APIs. */
- #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
- static uart_isr_t s_uartIsr = (uart_isr_t)DefaultISR;
- #else
- static uart_isr_t s_uartIsr;
- #endif
-
- /*******************************************************************************
- * Code
- ******************************************************************************/
-
- /*!
- * brief Get the UART instance from peripheral base address.
- *
- * param base UART peripheral base address.
- * return UART instance.
- */
- uint32_t UART_GetInstance(UART_Type *base)
- {
- uint32_t instance;
- uint32_t uartArrayCount = (sizeof(s_uartBases) / sizeof(s_uartBases[0]));
-
- /* Find the instance index from base address mappings. */
- for (instance = 0; instance < uartArrayCount; instance++)
- {
- if (s_uartBases[instance] == base)
- {
- break;
- }
- }
-
- assert(instance < uartArrayCount);
-
- return instance;
- }
-
- /*!
- * brief Get the length of received data in RX ring buffer.
- *
- * param handle UART handle pointer.
- * return Length of received data in RX ring buffer.
- */
- size_t UART_TransferGetRxRingBufferLength(uart_handle_t *handle)
- {
- assert(handle);
-
- size_t size;
- uint16_t rxRingBufferHead = handle->rxRingBufferHead;
- uint16_t rxRingBufferTail = handle->rxRingBufferTail;
-
- if (rxRingBufferTail > rxRingBufferHead)
- {
- size = (size_t)rxRingBufferHead + handle->rxRingBufferSize - (size_t)rxRingBufferTail;
- }
- else
- {
- size = (size_t)rxRingBufferHead - (size_t)rxRingBufferTail;
- }
-
- return size;
- }
-
- static bool UART_TransferIsRxRingBufferFull(uart_handle_t *handle)
- {
- assert(handle);
-
- bool full;
-
- if (UART_TransferGetRxRingBufferLength(handle) == (handle->rxRingBufferSize - 1U))
- {
- full = true;
- }
- else
- {
- full = false;
- }
-
- return full;
- }
-
- /*!
- * brief Initializes a UART instance with a user configuration structure and peripheral clock.
- *
- * This function configures the UART module with the user-defined settings. The user can configure the configuration
- * structure and also get the default configuration by using the UART_GetDefaultConfig() function.
- * The example below shows how to use this API to configure UART.
- * code
- * uart_config_t uartConfig;
- * uartConfig.baudRate_Bps = 115200U;
- * uartConfig.parityMode = kUART_ParityDisabled;
- * uartConfig.stopBitCount = kUART_OneStopBit;
- * uartConfig.txFifoWatermark = 0;
- * uartConfig.rxFifoWatermark = 1;
- * UART_Init(UART1, &uartConfig, 20000000U);
- * endcode
- *
- * param base UART peripheral base address.
- * param config Pointer to the user-defined configuration structure.
- * param srcClock_Hz UART clock source frequency in HZ.
- * retval kStatus_UART_BaudrateNotSupport Baudrate is not support in current clock source.
- * retval kStatus_Success Status UART initialize succeed
- */
- status_t UART_Init(UART_Type *base, const uart_config_t *config, uint32_t srcClock_Hz)
- {
- assert(config);
- assert(config->baudRate_Bps);
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- assert((uint8_t)FSL_FEATURE_UART_FIFO_SIZEn(base) >= config->txFifoWatermark);
- assert((uint8_t)FSL_FEATURE_UART_FIFO_SIZEn(base) >= config->rxFifoWatermark);
- #endif
-
- uint32_t sbr = 0U;
- uint8_t temp = 0U;
- uint32_t baudDiff = 0U;
-
- /* Calculate the baud rate modulo divisor, sbr*/
- sbr = srcClock_Hz / (config->baudRate_Bps * 16U);
- /* set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate */
- if (sbr == 0U)
- {
- sbr = 1U;
- }
- #if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
- /* Determine if a fractional divider is needed to fine tune closer to the
- * desired baud, each value of brfa is in 1/32 increments,
- * hence the multiply-by-32. */
- uint32_t tempBaud = 0U;
-
- uint32_t brfa = (2U * srcClock_Hz / (config->baudRate_Bps)) - 32U * sbr;
-
- /* Calculate the baud rate based on the temporary SBR values and BRFA */
- tempBaud = srcClock_Hz * 2U / (sbr * 32U + brfa);
- baudDiff =
- (tempBaud > config->baudRate_Bps) ? (tempBaud - config->baudRate_Bps) : (config->baudRate_Bps - tempBaud);
-
- #else
- /* Calculate the baud rate based on the temporary SBR values */
- baudDiff = (srcClock_Hz / (sbr * 16U)) - config->baudRate_Bps;
-
- /* Select the better value between sbr and (sbr + 1) */
- if (baudDiff > (config->baudRate_Bps - (srcClock_Hz / (16U * ((uint32_t)sbr + 1U)))))
- {
- baudDiff = config->baudRate_Bps - (srcClock_Hz / (16U * ((uint32_t)sbr + 1U)));
- sbr++;
- }
- #endif
-
- /* next, check to see if actual baud rate is within 3% of desired baud rate
- * based on the calculate SBR value */
- if (baudDiff > ((config->baudRate_Bps / 100U) * 3U))
- {
- /* Unacceptable baud rate difference of more than 3%*/
- return kStatus_UART_BaudrateNotSupport;
- }
-
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* Enable uart clock */
- CLOCK_EnableClock(s_uartClock[UART_GetInstance(base)]);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
-
- /* Disable UART TX RX before setting. */
- base->C2 &= ~((uint8_t)UART_C2_TE_MASK | (uint8_t)UART_C2_RE_MASK);
-
- /* Write the sbr value to the BDH and BDL registers*/
- base->BDH = (base->BDH & ~(uint8_t)UART_BDH_SBR_MASK) | (uint8_t)(sbr >> 8);
- base->BDL = (uint8_t)sbr;
-
- #if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
- /* Write the brfa value to the register*/
- base->C4 = (base->C4 & ~(uint8_t)UART_C4_BRFA_MASK) | ((uint8_t)brfa & UART_C4_BRFA_MASK);
- #endif
-
- /* Set bit count/parity mode/idle type. */
- temp = base->C1 &
- ~((uint8_t)UART_C1_PE_MASK | (uint8_t)UART_C1_PT_MASK | (uint8_t)UART_C1_M_MASK | (uint8_t)UART_C1_ILT_MASK);
-
- temp |= UART_C1_ILT(config->idleType);
-
- if (kUART_ParityDisabled != config->parityMode)
- {
- temp |= (UART_C1_M_MASK | (uint8_t)config->parityMode);
- }
-
- base->C1 = temp;
-
- #if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
- /* Set stop bit per char */
- base->BDH = (base->BDH & ~(uint8_t)UART_BDH_SBNS_MASK) | (uint8_t)UART_BDH_SBNS((uint8_t)config->stopBitCount);
- #endif
-
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /* Set tx/rx FIFO watermark
- Note:
- Take care of the RX FIFO, RX interrupt request only assert when received bytes
- equal or more than RX water mark, there is potential issue if RX water
- mark larger than 1.
- For example, if RX FIFO water mark is 2, upper layer needs 5 bytes and
- 5 bytes are received. the last byte will be saved in FIFO but not trigger
- RX interrupt because the water mark is 2.
- */
- base->TWFIFO = config->txFifoWatermark;
- base->RWFIFO = config->rxFifoWatermark;
-
- /* Enable tx/rx FIFO */
- base->PFIFO |= (UART_PFIFO_TXFE_MASK | UART_PFIFO_RXFE_MASK);
-
- /* Flush FIFO */
- base->CFIFO |= (UART_CFIFO_TXFLUSH_MASK | UART_CFIFO_RXFLUSH_MASK);
- #endif
- #if defined(FSL_FEATURE_UART_HAS_MODEM_SUPPORT) && FSL_FEATURE_UART_HAS_MODEM_SUPPORT
- if (config->enableRxRTS)
- {
- /* Enable receiver RTS(request-to-send) function. */
- base->MODEM |= UART_MODEM_RXRTSE_MASK;
- }
- if (config->enableTxCTS)
- {
- /* Enable transmitter CTS(clear-to-send) function. */
- base->MODEM |= UART_MODEM_TXCTSE_MASK;
- }
- #endif
-
- /* Enable TX/RX base on configure structure. */
- temp = base->C2;
-
- if (config->enableTx)
- {
- temp |= UART_C2_TE_MASK;
- }
-
- if (config->enableRx)
- {
- temp |= UART_C2_RE_MASK;
- }
-
- base->C2 = temp;
-
- return kStatus_Success;
- }
-
- /*!
- * brief Deinitializes a UART instance.
- *
- * This function waits for TX complete, disables TX and RX, and disables the UART clock.
- *
- * param base UART peripheral base address.
- */
- void UART_Deinit(UART_Type *base)
- {
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /* Wait tx FIFO send out*/
- while (0U != base->TCFIFO)
- {
- }
- #endif
- /* Wait last char shoft out */
- while (0U == (base->S1 & UART_S1_TC_MASK))
- {
- }
-
- /* Disable the module. */
- base->C2 = 0;
-
- #if !(defined(FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL) && FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL)
- /* Disable uart clock */
- CLOCK_DisableClock(s_uartClock[UART_GetInstance(base)]);
- #endif /* FSL_SDK_DISABLE_DRIVER_CLOCK_CONTROL */
- }
-
- /*!
- * brief Gets the default configuration structure.
- *
- * This function initializes the UART configuration structure to a default value. The default
- * values are as follows.
- * uartConfig->baudRate_Bps = 115200U;
- * uartConfig->bitCountPerChar = kUART_8BitsPerChar;
- * uartConfig->parityMode = kUART_ParityDisabled;
- * uartConfig->stopBitCount = kUART_OneStopBit;
- * uartConfig->txFifoWatermark = 0;
- * uartConfig->rxFifoWatermark = 1;
- * uartConfig->idleType = kUART_IdleTypeStartBit;
- * uartConfig->enableTx = false;
- * uartConfig->enableRx = false;
- *
- * param config Pointer to configuration structure.
- */
- void UART_GetDefaultConfig(uart_config_t *config)
- {
- assert(config);
-
- /* Initializes the configure structure to zero. */
- (void)memset(config, 0, sizeof(*config));
-
- config->baudRate_Bps = 115200U;
- config->parityMode = kUART_ParityDisabled;
- #if defined(FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT) && FSL_FEATURE_UART_HAS_STOP_BIT_CONFIG_SUPPORT
- config->stopBitCount = kUART_OneStopBit;
- #endif
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- config->txFifoWatermark = 0;
- config->rxFifoWatermark = 1;
- #endif
- #if defined(FSL_FEATURE_UART_HAS_MODEM_SUPPORT) && FSL_FEATURE_UART_HAS_MODEM_SUPPORT
- config->enableRxRTS = false;
- config->enableTxCTS = false;
- #endif
- config->idleType = kUART_IdleTypeStartBit;
- config->enableTx = false;
- config->enableRx = false;
- }
-
- /*!
- * brief Sets the UART instance baud rate.
- *
- * This function configures the UART module baud rate. This function is used to update
- * the UART module baud rate after the UART module is initialized by the UART_Init.
- * code
- * UART_SetBaudRate(UART1, 115200U, 20000000U);
- * endcode
- *
- * param base UART peripheral base address.
- * param baudRate_Bps UART baudrate to be set.
- * param srcClock_Hz UART clock source frequency in Hz.
- * retval kStatus_UART_BaudrateNotSupport Baudrate is not support in the current clock source.
- * retval kStatus_Success Set baudrate succeeded.
- */
- status_t UART_SetBaudRate(UART_Type *base, uint32_t baudRate_Bps, uint32_t srcClock_Hz)
- {
- assert(baudRate_Bps);
-
- uint32_t sbr = 0;
- uint32_t baudDiff = 0;
- uint8_t oldCtrl;
-
- /* Calculate the baud rate modulo divisor, sbr*/
- sbr = srcClock_Hz / (baudRate_Bps * 16U);
- /* set sbrTemp to 1 if the sourceClockInHz can not satisfy the desired baud rate */
- if (sbr == 0U)
- {
- sbr = 1U;
- }
- #if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
- /* Determine if a fractional divider is needed to fine tune closer to the
- * desired baud, each value of brfa is in 1/32 increments,
- * hence the multiply-by-32. */
- uint32_t tempBaud = 0U;
-
- uint32_t brfa = (2U * srcClock_Hz / (baudRate_Bps)) - 32U * sbr;
-
- /* Calculate the baud rate based on the temporary SBR values and BRFA */
- tempBaud = (srcClock_Hz * 2U / ((sbr * 32U + brfa)));
- baudDiff = (tempBaud > baudRate_Bps) ? (tempBaud - baudRate_Bps) : (baudRate_Bps - tempBaud);
- #else
- /* Calculate the baud rate based on the temporary SBR values */
- baudDiff = (srcClock_Hz / (sbr * 16U)) - baudRate_Bps;
-
- /* Select the better value between sbr and (sbr + 1) */
- if (baudDiff > (baudRate_Bps - (srcClock_Hz / (16U * (sbr + 1U)))))
- {
- baudDiff = baudRate_Bps - (srcClock_Hz / (16U * (sbr + 1U)));
- sbr++;
- }
- #endif
-
- /* next, check to see if actual baud rate is within 3% of desired baud rate
- * based on the calculate SBR value */
- if (baudDiff < ((baudRate_Bps / 100U) * 3U))
- {
- /* Store C2 before disable Tx and Rx */
- oldCtrl = base->C2;
-
- /* Disable UART TX RX before setting. */
- base->C2 &= ~((uint8_t)UART_C2_TE_MASK | (uint8_t)UART_C2_RE_MASK);
-
- /* Write the sbr value to the BDH and BDL registers*/
- base->BDH = (base->BDH & ~(uint8_t)UART_BDH_SBR_MASK) | (uint8_t)(sbr >> 8);
- base->BDL = (uint8_t)sbr;
-
- #if defined(FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT) && FSL_FEATURE_UART_HAS_BAUD_RATE_FINE_ADJUST_SUPPORT
- /* Write the brfa value to the register*/
- base->C4 = (base->C4 & ~(uint8_t)UART_C4_BRFA_MASK) | ((uint8_t)brfa & (uint8_t)UART_C4_BRFA_MASK);
- #endif
- /* Restore C2. */
- base->C2 = oldCtrl;
-
- return kStatus_Success;
- }
- else
- {
- /* Unacceptable baud rate difference of more than 3%*/
- return kStatus_UART_BaudrateNotSupport;
- }
- }
-
- /*!
- * brief Enables UART interrupts according to the provided mask.
- *
- * This function enables the UART interrupts according to the provided mask. The mask
- * is a logical OR of enumeration members. See ref _uart_interrupt_enable.
- * For example, to enable TX empty interrupt and RX full interrupt, do the following.
- * code
- * UART_EnableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable);
- * endcode
- *
- * param base UART peripheral base address.
- * param mask The interrupts to enable. Logical OR of ref _uart_interrupt_enable.
- */
- void UART_EnableInterrupts(UART_Type *base, uint32_t mask)
- {
- mask &= (uint32_t)kUART_AllInterruptsEnable;
-
- /* The interrupt mask is combined by control bits from several register: ((CFIFO<<24) | (C3<<16) | (C2<<8) |(BDH))
- */
- base->BDH |= (uint8_t)mask;
- base->C2 |= (uint8_t)(mask >> 8);
- base->C3 |= (uint8_t)(mask >> 16);
-
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- base->CFIFO |= (uint8_t)(mask >> 24);
- #endif
- }
-
- /*!
- * brief Disables the UART interrupts according to the provided mask.
- *
- * This function disables the UART interrupts according to the provided mask. The mask
- * is a logical OR of enumeration members. See ref _uart_interrupt_enable.
- * For example, to disable TX empty interrupt and RX full interrupt do the following.
- * code
- * UART_DisableInterrupts(UART1,kUART_TxDataRegEmptyInterruptEnable | kUART_RxDataRegFullInterruptEnable);
- * endcode
- *
- * param base UART peripheral base address.
- * param mask The interrupts to disable. Logical OR of ref _uart_interrupt_enable.
- */
- void UART_DisableInterrupts(UART_Type *base, uint32_t mask)
- {
- mask &= (uint32_t)kUART_AllInterruptsEnable;
-
- /* The interrupt mask is combined by control bits from several register: ((CFIFO<<24) | (C3<<16) | (C2<<8) |(BDH))
- */
- base->BDH &= ~(uint8_t)mask;
- base->C2 &= ~(uint8_t)(mask >> 8);
- base->C3 &= ~(uint8_t)(mask >> 16);
-
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- base->CFIFO &= ~(uint8_t)(mask >> 24);
- #endif
- }
-
- /*!
- * brief Gets the enabled UART interrupts.
- *
- * This function gets the enabled UART interrupts. The enabled interrupts are returned
- * as the logical OR value of the enumerators ref _uart_interrupt_enable. To check
- * a specific interrupts enable status, compare the return value with enumerators
- * in ref _uart_interrupt_enable.
- * For example, to check whether TX empty interrupt is enabled, do the following.
- * code
- * uint32_t enabledInterrupts = UART_GetEnabledInterrupts(UART1);
- *
- * if (kUART_TxDataRegEmptyInterruptEnable & enabledInterrupts)
- * {
- * ...
- * }
- * endcode
- *
- * param base UART peripheral base address.
- * return UART interrupt flags which are logical OR of the enumerators in ref _uart_interrupt_enable.
- */
- uint32_t UART_GetEnabledInterrupts(UART_Type *base)
- {
- uint32_t temp;
-
- temp = (uint32_t)base->BDH;
- temp |= ((uint32_t)(base->C2) << 8);
- temp |= ((uint32_t)(base->C3) << 16);
-
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- temp |= ((uint32_t)(base->CFIFO) << 24);
- #endif
-
- return temp & (uint32_t)kUART_AllInterruptsEnable;
- }
-
- /*!
- * brief Gets UART status flags.
- *
- * This function gets all UART status flags. The flags are returned as the logical
- * OR value of the enumerators ref _uart_flags. To check a specific status,
- * compare the return value with enumerators in ref _uart_flags.
- * For example, to check whether the TX is empty, do the following.
- * code
- * if (kUART_TxDataRegEmptyFlag & UART_GetStatusFlags(UART1))
- * {
- * ...
- * }
- * endcode
- *
- * param base UART peripheral base address.
- * return UART status flags which are ORed by the enumerators in the _uart_flags.
- */
- uint32_t UART_GetStatusFlags(UART_Type *base)
- {
- uint32_t status_flag;
-
- status_flag = (uint32_t)base->S1;
- status_flag |= ((uint32_t)(base->S2) << 8);
-
- #if defined(FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS) && FSL_FEATURE_UART_HAS_EXTENDED_DATA_REGISTER_FLAGS
- status_flag |= ((uint32_t)(base->ED) << 16);
- #endif
-
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- status_flag |= ((uint32_t)(base->SFIFO) << 24);
- #endif
-
- return status_flag;
- }
-
- /*!
- * brief Clears status flags with the provided mask.
- *
- * This function clears UART status flags with a provided mask. An automatically cleared flag
- * can't be cleared by this function.
- * These flags can only be cleared or set by hardware.
- * kUART_TxDataRegEmptyFlag, kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag,
- * kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag, kUART_ParityErrorInRxDataRegFlag,
- * kUART_TxFifoEmptyFlag,kUART_RxFifoEmptyFlag
- * Note that this API should be called when the Tx/Rx is idle. Otherwise it has no effect.
- *
- * param base UART peripheral base address.
- * param mask The status flags to be cleared; it is logical OR value of ref _uart_flags.
- * retval kStatus_UART_FlagCannotClearManually The flag can't be cleared by this function but
- * it is cleared automatically by hardware.
- * retval kStatus_Success Status in the mask is cleared.
- */
- status_t UART_ClearStatusFlags(UART_Type *base, uint32_t mask)
- {
- uint8_t reg = base->S2;
- status_t status;
-
- #if defined(FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT) && FSL_FEATURE_UART_HAS_LIN_BREAK_DETECT
- reg &= ~((uint8_t)UART_S2_RXEDGIF_MASK | (uint8_t)UART_S2_LBKDIF_MASK);
- #else
- reg &= ~(uint8_t)UART_S2_RXEDGIF_MASK;
- #endif
-
- base->S2 = reg | (uint8_t)(mask >> 8);
-
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- base->SFIFO = (uint8_t)(mask >> 24);
- #endif
-
- if ((mask & ((uint32_t)kUART_IdleLineFlag | (uint32_t)kUART_NoiseErrorFlag | (uint32_t)kUART_FramingErrorFlag |
- (uint32_t)kUART_ParityErrorFlag | (uint32_t)kUART_RxOverrunFlag)) != 0u)
- {
- /* Read base->S1 and base->D to clear the flags. */
- (void)base->S1;
- (void)base->D;
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /* Read base->D may cause receiver underflow when there are no valid data.
- Clear receiver underflow flag */
- base->SFIFO = UART_SFIFO_RXUF_MASK;
- /* Flush FIFO data. Otherwise FIFO pointer will be in unknown state. */
- base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
- #endif
- }
-
- /* If some flags still pending. */
- if ((mask & UART_GetStatusFlags(base)) != 0U)
- {
- /* Some flags can only clear or set by the hardware itself, these flags are: kUART_TxDataRegEmptyFlag,
- kUART_TransmissionCompleteFlag, kUART_RxDataRegFullFlag, kUART_RxActiveFlag, kUART_NoiseErrorInRxDataRegFlag,
- kUART_ParityErrorInRxDataRegFlag, kUART_TxFifoEmptyFlag, kUART_RxFifoEmptyFlag. */
- status = kStatus_UART_FlagCannotClearManually;
- }
- else
- {
- status = kStatus_Success;
- }
-
- return status;
- }
-
- /*!
- * brief Writes to the TX register using a blocking method.
- *
- * This function polls the TX register, waits for the TX register to be empty or for the TX FIFO
- * to have room and writes data to the TX buffer.
- *
- * param base UART peripheral base address.
- * param data Start address of the data to write.
- * param length Size of the data to write.
- * retval kStatus_UART_Timeout Transmission timed out and was aborted.
- * retval kStatus_Success Successfully wrote all data.
- */
- status_t UART_WriteBlocking(UART_Type *base, const uint8_t *data, size_t length)
- {
- #if UART_RETRY_TIMES
- uint32_t waitTimes;
- #endif
- while (0U != length--)
- {
- #if UART_RETRY_TIMES
- waitTimes = UART_RETRY_TIMES;
- while ((0U == (base->S1 & UART_S1_TDRE_MASK)) && (0U != --waitTimes))
- #else
- while (0U == (base->S1 & UART_S1_TDRE_MASK))
- #endif
- {
- }
- #if UART_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_LPUART_Timeout;
- }
- #endif
- base->D = *(data++);
- }
-
- /* Ensure all the data in the transmit buffer are sent out to bus. */
- #if UART_RETRY_TIMES
- waitTimes = UART_RETRY_TIMES;
- while ((0U == (base->S1 & UART_S1_TC_MASK)) && (0U != --waitTimes))
- #else
- while (0U == (base->S1 & UART_S1_TC_MASK))
- #endif
- {
- }
- #if UART_RETRY_TIMES
- if (waitTimes == 0U)
- {
- return kStatus_LPUART_Timeout;
- }
- #endif
- return kStatus_Success;
- }
-
- static void UART_WriteNonBlocking(UART_Type *base, const uint8_t *data, size_t length)
- {
- assert(data);
-
- size_t i;
-
- /* The Non Blocking write data API assume user have ensured there is enough space in
- peripheral to write. */
- for (i = 0; i < length; i++)
- {
- base->D = data[i];
- }
- }
-
- /*!
- * brief Read RX data register using a blocking method.
- *
- * This function polls the RX register, waits for the RX register to be full or for RX FIFO to
- * have data, and reads data from the TX register.
- *
- * param base UART peripheral base address.
- * param data Start address of the buffer to store the received data.
- * param length Size of the buffer.
- * retval kStatus_UART_RxHardwareOverrun Receiver overrun occurred while receiving data.
- * retval kStatus_UART_NoiseError A noise error occurred while receiving data.
- * retval kStatus_UART_FramingError A framing error occurred while receiving data.
- * retval kStatus_UART_ParityError A parity error occurred while receiving data.
- * retval kStatus_UART_Timeout Transmission timed out and was aborted.
- * retval kStatus_Success Successfully received all data.
- */
- status_t UART_ReadBlocking(UART_Type *base, uint8_t *data, size_t length)
- {
- assert(data != NULL);
-
- status_t status = kStatus_Success;
- uint32_t statusFlag;
- #if UART_RETRY_TIMES
- uint32_t waitTimes;
- #endif
-
- while (length-- != 0U)
- {
- #if UART_RETRY_TIMES
- waitTimes = UART_RETRY_TIMES;
- #endif
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- while (base->RCFIFO == 0U)
- #else
- while ((base->S1 & UART_S1_RDRF_MASK) == 0U)
- #endif
- {
- #if UART_RETRY_TIMES
- if (0U == --waitTimes)
- {
- status = kStatus_LPUART_Timeout;
- break;
- }
- #endif
- statusFlag = UART_GetStatusFlags(base);
-
- if (0U != (statusFlag & (uint32_t)kUART_RxOverrunFlag))
- {
- status = ((kStatus_Success == UART_ClearStatusFlags(base, (uint32_t)kUART_RxOverrunFlag)) ?
- (status_t)(kStatus_UART_RxHardwareOverrun) :
- (status_t)(kStatus_UART_FlagCannotClearManually));
- /* If the OR bit is set all the other error flags are prevented from setting,
- no need to check other status flags. */
- break;
- }
-
- if (0U != (statusFlag & (uint32_t)kUART_ParityErrorFlag))
- {
- status = ((kStatus_Success == UART_ClearStatusFlags(base, (uint32_t)kUART_ParityErrorFlag)) ?
- (status_t)(kStatus_UART_ParityError) :
- (status_t)(kStatus_UART_FlagCannotClearManually));
- }
-
- if (0U != (statusFlag & (uint32_t)kUART_FramingErrorFlag))
- {
- status = ((kStatus_Success == UART_ClearStatusFlags(base, (uint32_t)kUART_FramingErrorFlag)) ?
- (status_t)(kStatus_UART_FramingError) :
- (status_t)(kStatus_UART_FlagCannotClearManually));
- }
-
- if (0U != (statusFlag & (uint32_t)kUART_NoiseErrorFlag))
- {
- status = ((kStatus_Success == UART_ClearStatusFlags(base, (uint32_t)kUART_NoiseErrorFlag)) ?
- (status_t)(kStatus_UART_NoiseError) :
- (status_t)(kStatus_UART_FlagCannotClearManually));
- }
- if (kStatus_Success != status)
- {
- break;
- }
- }
- if (kStatus_Success == status)
- {
- *(data++) = base->D;
- }
- else
- {
- break;
- }
- }
-
- return status;
- }
-
- static void UART_ReadNonBlocking(UART_Type *base, uint8_t *data, size_t length)
- {
- assert(data);
-
- size_t i;
-
- /* The Non Blocking read data API assume user have ensured there is enough space in
- peripheral to write. */
- for (i = 0; i < length; i++)
- {
- data[i] = base->D;
- }
- }
-
- /*!
- * brief Initializes the UART handle.
- *
- * This function initializes the UART handle which can be used for other UART
- * transactional APIs. Usually, for a specified UART instance,
- * call this API once to get the initialized handle.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- * param callback The callback function.
- * param userData The parameter of the callback function.
- */
- void UART_TransferCreateHandle(UART_Type *base,
- uart_handle_t *handle,
- uart_transfer_callback_t callback,
- void *userData)
- {
- assert(handle);
-
- uint32_t instance;
-
- /* Zero the handle. */
- (void)memset(handle, 0, sizeof(*handle));
-
- /* Set the TX/RX state. */
- handle->rxState = (uint8_t)kUART_RxIdle;
- handle->txState = (uint8_t)kUART_TxIdle;
-
- /* Set the callback and user data. */
- handle->callback = callback;
- handle->userData = userData;
-
- /* Get instance from peripheral base address. */
- instance = UART_GetInstance(base);
-
- /* Save the handle in global variables to support the double weak mechanism. */
- s_uartHandle[instance] = handle;
-
- s_uartIsr = UART_TransferHandleIRQ;
- /* Enable interrupt in NVIC. */
- (void)EnableIRQ(s_uartIRQ[instance]);
- }
-
- /*!
- * brief Sets up the RX ring buffer.
- *
- * This function sets up the RX ring buffer to a specific UART handle.
- *
- * When the RX ring buffer is used, data received are stored into the ring buffer even when the
- * user doesn't call the UART_TransferReceiveNonBlocking() API. If data is already received
- * in the ring buffer, the user can get the received data from the ring buffer directly.
- *
- * note When using the RX ring buffer, one byte is reserved for internal use. In other
- * words, if p ringBufferSize is 32, only 31 bytes are used for saving data.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- * param ringBuffer Start address of the ring buffer for background receiving. Pass NULL to disable the ring buffer.
- * param ringBufferSize Size of the ring buffer.
- */
- void UART_TransferStartRingBuffer(UART_Type *base, uart_handle_t *handle, uint8_t *ringBuffer, size_t ringBufferSize)
- {
- assert(handle);
- assert(ringBuffer);
-
- /* Setup the ringbuffer address */
- handle->rxRingBuffer = ringBuffer;
- handle->rxRingBufferSize = ringBufferSize;
- handle->rxRingBufferHead = 0U;
- handle->rxRingBufferTail = 0U;
-
- /* Enable the interrupt to accept the data when user need the ring buffer. */
- UART_EnableInterrupts(base, (uint32_t)kUART_RxDataRegFullInterruptEnable |
- (uint32_t)kUART_RxOverrunInterruptEnable |
- (uint32_t)kUART_FramingErrorInterruptEnable);
- /* Enable parity error interrupt when parity mode is enable*/
- if ((UART_C1_PE_MASK & base->C1) != 0U)
- {
- UART_EnableInterrupts(base, (uint32_t)kUART_ParityErrorInterruptEnable);
- }
- }
-
- /*!
- * brief Aborts the background transfer and uninstalls the ring buffer.
- *
- * This function aborts the background transfer and uninstalls the ring buffer.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- */
- void UART_TransferStopRingBuffer(UART_Type *base, uart_handle_t *handle)
- {
- assert(handle);
-
- if (handle->rxState == (uint8_t)kUART_RxIdle)
- {
- UART_DisableInterrupts(base, (uint32_t)kUART_RxDataRegFullInterruptEnable |
- (uint32_t)kUART_RxOverrunInterruptEnable |
- (uint32_t)kUART_FramingErrorInterruptEnable);
- /* Disable parity error interrupt when parity mode is enable*/
- if ((UART_C1_PE_MASK & base->C1) != 0U)
- {
- UART_DisableInterrupts(base, (uint32_t)kUART_ParityErrorInterruptEnable);
- }
- }
-
- handle->rxRingBuffer = NULL;
- handle->rxRingBufferSize = 0U;
- handle->rxRingBufferHead = 0U;
- handle->rxRingBufferTail = 0U;
- }
-
- /*!
- * brief Transmits a buffer of data using the interrupt method.
- *
- * This function sends data using an interrupt method. This is a non-blocking function, which
- * returns directly without waiting for all data to be written to the TX register. When
- * all data is written to the TX register in the ISR, the UART driver calls the callback
- * function and passes the ref kStatus_UART_TxIdle as status parameter.
- *
- * note The kStatus_UART_TxIdle is passed to the upper layer when all data is written
- * to the TX register. However, it does not ensure that all data is sent out. Before disabling the TX,
- * check the kUART_TransmissionCompleteFlag to ensure that the TX is finished.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- * param xfer UART transfer structure. See #uart_transfer_t.
- * retval kStatus_Success Successfully start the data transmission.
- * retval kStatus_UART_TxBusy Previous transmission still not finished; data not all written to TX register yet.
- * retval kStatus_InvalidArgument Invalid argument.
- */
- status_t UART_TransferSendNonBlocking(UART_Type *base, uart_handle_t *handle, uart_transfer_t *xfer)
- {
- assert(handle);
- assert(xfer);
- assert(xfer->dataSize);
- assert(xfer->data);
-
- status_t status;
-
- /* Return error if current TX busy. */
- if ((uint8_t)kUART_TxBusy == handle->txState)
- {
- status = kStatus_UART_TxBusy;
- }
- else
- {
- handle->txData = xfer->data;
- handle->txDataSize = xfer->dataSize;
- handle->txDataSizeAll = xfer->dataSize;
- handle->txState = (uint8_t)kUART_TxBusy;
-
- /* Enable transmitter interrupt. */
- UART_EnableInterrupts(base, (uint32_t)kUART_TxDataRegEmptyInterruptEnable);
-
- status = kStatus_Success;
- }
-
- return status;
- }
-
- /*!
- * brief Aborts the interrupt-driven data transmit.
- *
- * This function aborts the interrupt-driven data sending. The user can get the remainBytes to find out
- * how many bytes are not sent out.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- */
- void UART_TransferAbortSend(UART_Type *base, uart_handle_t *handle)
- {
- assert(handle);
-
- UART_DisableInterrupts(
- base, (uint32_t)kUART_TxDataRegEmptyInterruptEnable | (uint32_t)kUART_TransmissionCompleteInterruptEnable);
-
- handle->txDataSize = 0;
- handle->txState = (uint8_t)kUART_TxIdle;
- }
-
- /*!
- * brief Gets the number of bytes sent out to bus.
- *
- * This function gets the number of bytes sent out to bus by using the interrupt method.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- * param count Send bytes count.
- * retval kStatus_NoTransferInProgress No send in progress.
- * retval kStatus_InvalidArgument The parameter is invalid.
- * retval kStatus_Success Get successfully through the parameter \p count;
- */
- status_t UART_TransferGetSendCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)
- {
- assert(handle);
- assert(count);
-
- if ((uint8_t)kUART_TxIdle == handle->txState)
- {
- return kStatus_NoTransferInProgress;
- }
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- *count = handle->txDataSizeAll - handle->txDataSize - base->TCFIFO;
- #else
- if ((base->S1 & (uint8_t)kUART_TxDataRegEmptyFlag) != 0U)
- {
- *count = handle->txDataSizeAll - handle->txDataSize;
- }
- else
- {
- *count = handle->txDataSizeAll - handle->txDataSize - 1U;
- }
- #endif /* FSL_FEATURE_UART_HAS_FIFO */
-
- return kStatus_Success;
- }
-
- /*!
- * brief Receives a buffer of data using an interrupt method.
- *
- * This function receives data using an interrupt method. This is a non-blocking function, which
- * returns without waiting for all data to be received.
- * If the RX ring buffer is used and not empty, the data in the ring buffer is copied and
- * the parameter p receivedBytes shows how many bytes are copied from the ring buffer.
- * After copying, if the data in the ring buffer is not enough to read, the receive
- * request is saved by the UART driver. When the new data arrives, the receive request
- * is serviced first. When all data is received, the UART driver notifies the upper layer
- * through a callback function and passes the status parameter ref kStatus_UART_RxIdle.
- * For example, the upper layer needs 10 bytes but there are only 5 bytes in the ring buffer.
- * The 5 bytes are copied to the xfer->data and this function returns with the
- * parameter p receivedBytes set to 5. For the left 5 bytes, newly arrived data is
- * saved from the xfer->data[5]. When 5 bytes are received, the UART driver notifies the upper layer.
- * If the RX ring buffer is not enabled, this function enables the RX and RX interrupt
- * to receive data to the xfer->data. When all data is received, the upper layer is notified.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- * param xfer UART transfer structure, see #uart_transfer_t.
- * param receivedBytes Bytes received from the ring buffer directly.
- * retval kStatus_Success Successfully queue the transfer into transmit queue.
- * retval kStatus_UART_RxBusy Previous receive request is not finished.
- * retval kStatus_InvalidArgument Invalid argument.
- */
- status_t UART_TransferReceiveNonBlocking(UART_Type *base,
- uart_handle_t *handle,
- uart_transfer_t *xfer,
- size_t *receivedBytes)
- {
- assert(handle);
- assert(xfer);
- assert(xfer->data);
- assert(xfer->dataSize);
-
- uint32_t i;
- status_t status;
- /* How many bytes to copy from ring buffer to user memory. */
- size_t bytesToCopy = 0U;
- /* How many bytes to receive. */
- size_t bytesToReceive;
- /* How many bytes currently have received. */
- size_t bytesCurrentReceived;
-
- /* How to get data:
- 1. If RX ring buffer is not enabled, then save xfer->data and xfer->dataSize
- to uart handle, enable interrupt to store received data to xfer->data. When
- all data received, trigger callback.
- 2. If RX ring buffer is enabled and not empty, get data from ring buffer first.
- If there are enough data in ring buffer, copy them to xfer->data and return.
- If there are not enough data in ring buffer, copy all of them to xfer->data,
- save the xfer->data remained empty space to uart handle, receive data
- to this empty space and trigger callback when finished. */
-
- if ((uint8_t)kUART_RxBusy == handle->rxState)
- {
- status = kStatus_UART_RxBusy;
- }
- else
- {
- bytesToReceive = xfer->dataSize;
- bytesCurrentReceived = 0U;
-
- /* If RX ring buffer is used. */
- if (handle->rxRingBuffer != NULL)
- {
- /* Disable UART RX IRQ, protect ring buffer. */
- UART_DisableInterrupts(base, (uint32_t)kUART_RxDataRegFullInterruptEnable);
-
- /* How many bytes in RX ring buffer currently. */
- bytesToCopy = UART_TransferGetRxRingBufferLength(handle);
-
- if (bytesToCopy != 0U)
- {
- bytesToCopy = MIN(bytesToReceive, bytesToCopy);
-
- bytesToReceive -= bytesToCopy;
-
- /* Copy data from ring buffer to user memory. */
- for (i = 0U; i < bytesToCopy; i++)
- {
- xfer->data[bytesCurrentReceived++] = handle->rxRingBuffer[handle->rxRingBufferTail];
-
- /* Wrap to 0. Not use modulo (%) because it might be large and slow. */
- if ((size_t)handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
- {
- handle->rxRingBufferTail = 0U;
- }
- else
- {
- handle->rxRingBufferTail++;
- }
- }
- }
-
- /* If ring buffer does not have enough data, still need to read more data. */
- if (bytesToReceive != 0U)
- {
- /* No data in ring buffer, save the request to UART handle. */
- handle->rxData = xfer->data + bytesCurrentReceived;
- handle->rxDataSize = bytesToReceive;
- handle->rxDataSizeAll = bytesToReceive;
- handle->rxState = (uint8_t)kUART_RxBusy;
- }
-
- /* Enable UART RX IRQ if previously enabled. */
- UART_EnableInterrupts(base, (uint32_t)kUART_RxDataRegFullInterruptEnable);
-
- /* Call user callback since all data are received. */
- if (0U == bytesToReceive)
- {
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData);
- }
- }
- }
- /* Ring buffer not used. */
- else
- {
- handle->rxData = xfer->data + bytesCurrentReceived;
- handle->rxDataSize = bytesToReceive;
- handle->rxDataSizeAll = bytesToReceive;
- handle->rxState = (uint8_t)kUART_RxBusy;
-
- /* Enable RX/Rx overrun/framing error/idle line interrupt. */
- UART_EnableInterrupts(
- base, (uint32_t)kUART_RxDataRegFullInterruptEnable | (uint32_t)kUART_RxOverrunInterruptEnable |
- (uint32_t)kUART_FramingErrorInterruptEnable | (uint32_t)kUART_IdleLineInterruptEnable);
- /* Enable parity error interrupt when parity mode is enable*/
- if ((UART_C1_PE_MASK & base->C1) != 0U)
- {
- UART_EnableInterrupts(base, (uint32_t)kUART_ParityErrorInterruptEnable);
- }
- }
-
- /* Return the how many bytes have read. */
- if (receivedBytes != NULL)
- {
- *receivedBytes = bytesCurrentReceived;
- }
-
- status = kStatus_Success;
- }
-
- return status;
- }
-
- /*!
- * brief Aborts the interrupt-driven data receiving.
- *
- * This function aborts the interrupt-driven data receiving. The user can get the remainBytes to know
- * how many bytes are not received yet.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- */
- void UART_TransferAbortReceive(UART_Type *base, uart_handle_t *handle)
- {
- assert(handle);
-
- /* Only abort the receive to handle->rxData, the RX ring buffer is still working. */
- if (NULL == handle->rxRingBuffer)
- {
- /* Disable RX interrupt. */
- UART_DisableInterrupts(
- base, (uint32_t)kUART_RxDataRegFullInterruptEnable | (uint32_t)kUART_RxOverrunInterruptEnable |
- (uint32_t)kUART_FramingErrorInterruptEnable | (uint32_t)kUART_IdleLineInterruptEnable);
- /* Disable parity error interrupt when parity mode is enable*/
- if ((UART_C1_PE_MASK & base->C1) != 0U)
- {
- UART_DisableInterrupts(base, (uint32_t)kUART_ParityErrorInterruptEnable);
- }
- }
-
- handle->rxDataSize = 0U;
- handle->rxState = (uint8_t)kUART_RxIdle;
- }
-
- /*!
- * brief Gets the number of bytes that have been received.
- *
- * This function gets the number of bytes that have been received.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- * param count Receive bytes count.
- * retval kStatus_NoTransferInProgress No receive in progress.
- * retval kStatus_InvalidArgument Parameter is invalid.
- * retval kStatus_Success Get successfully through the parameter \p count;
- */
- status_t UART_TransferGetReceiveCount(UART_Type *base, uart_handle_t *handle, uint32_t *count)
- {
- assert(handle);
- assert(count);
-
- if ((uint8_t)kUART_RxIdle == handle->rxState)
- {
- return kStatus_NoTransferInProgress;
- }
-
- if (NULL == count)
- {
- return kStatus_InvalidArgument;
- }
-
- *count = handle->rxDataSizeAll - handle->rxDataSize;
-
- return kStatus_Success;
- }
-
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /*!
- * @brief Enables or disables the UART Tx FIFO.
- *
- * This function enables or disables the UART Tx FIFO.
- *
- * param base UART peripheral base address.
- * param enable true to enable, false to disable.
- * retval kStatus_Success Successfully turn on or turn off Tx FIFO.
- * retval kStatus_Fail Fail to turn on or turn off Tx FIFO.
- */
- status_t UART_EnableTxFIFO(UART_Type *base, bool enable)
- {
- uint8_t sfifo = 0;
- uint8_t temp = 0;
-
- sfifo = base->SFIFO;
- temp = base->C2 & (UART_C2_RE_MASK | UART_C2_TE_MASK);
- /* The Tx FIFO must be empty */
- if ((sfifo & UART_SFIFO_TXEMPT_MASK) == UART_SFIFO_TXEMPT_MASK)
- {
- /* Disable UART TX RX before setting */
- base->C2 &= ~((uint8_t)UART_C2_TE_MASK | (uint8_t)UART_C2_RE_MASK);
- /* Flush FIFO */
- base->CFIFO |= (UART_CFIFO_TXFLUSH_MASK | UART_CFIFO_RXFLUSH_MASK);
-
- if (enable)
- {
- base->PFIFO |= (uint8_t)UART_PFIFO_TXFE_MASK;
- }
- else
- {
- base->PFIFO &= ~(uint8_t)UART_PFIFO_TXFE_MASK;
- }
-
- /* Flush FIFO */
- base->CFIFO |= (UART_CFIFO_TXFLUSH_MASK | UART_CFIFO_RXFLUSH_MASK);
- base->C2 |= temp;
- return kStatus_Success;
- }
- else
- {
- return kStatus_Fail;
- }
- }
-
- /*!
- * @brief Enables or disables the UART Rx FIFO.
- *
- * This function enables or disables the UART Rx FIFO.
- *
- * param base UART peripheral base address.
- * param enable true to enable, false to disable.
- * retval kStatus_Success Successfully turn on or turn off Rx FIFO.
- * retval kStatus_Fail Fail to turn on or turn off Rx FIFO.
- */
- status_t UART_EnableRxFIFO(UART_Type *base, bool enable)
- {
- uint8_t sfifo = 0;
- uint8_t temp = 0;
-
- sfifo = base->SFIFO;
- temp = base->C2 & ((uint8_t)UART_C2_RE_MASK | (uint8_t)UART_C2_TE_MASK);
- /* The Rx FIFO must be empty */
- if ((sfifo & UART_SFIFO_RXEMPT_MASK) == UART_SFIFO_RXEMPT_MASK)
- {
- /* Disable UART TX RX before setting */
- base->C2 &= ~((uint8_t)UART_C2_TE_MASK | (uint8_t)UART_C2_RE_MASK);
- /* Flush FIFO */
- base->CFIFO |= (UART_CFIFO_TXFLUSH_MASK | UART_CFIFO_RXFLUSH_MASK);
-
- if (enable)
- {
- base->PFIFO |= (uint8_t)UART_PFIFO_RXFE_MASK;
- }
- else
- {
- base->PFIFO &= ~(uint8_t)UART_PFIFO_RXFE_MASK;
- }
- /* Flush FIFO */
- base->CFIFO |= (UART_CFIFO_TXFLUSH_MASK | UART_CFIFO_RXFLUSH_MASK);
- base->C2 |= temp;
- return kStatus_Success;
- }
- else
- {
- return kStatus_Fail;
- }
- }
- #endif /* FSL_FEATURE_UART_HAS_FIFO */
-
- /*!
- * brief UART IRQ handle function.
- *
- * This function handles the UART transmit and receive IRQ request.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- */
- void UART_TransferHandleIRQ(UART_Type *base, uart_handle_t *handle)
- {
- assert(handle);
-
- uint8_t count;
- uint8_t tempCount;
- uint32_t status = UART_GetStatusFlags(base);
- uint8_t tmpdata;
-
- /* If RX framing error */
- if (((uint32_t)kUART_FramingErrorFlag & status) != 0U)
- {
- /* Read base->D to clear framing error flag, otherwise the RX does not work. */
- while ((base->S1 & UART_S1_RDRF_MASK) != 0U)
- {
- (void)base->D;
- }
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
- base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
- #endif
-
- handle->rxState = (uint8_t)kUART_RxFramingError;
- handle->rxDataSize = 0U;
- /* Trigger callback. */
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_UART_FramingError, handle->userData);
- }
- }
-
- /* If RX parity error */
- if (((uint32_t)kUART_ParityErrorFlag & status) != 0U)
- {
- /* Read base->D to clear parity error flag, otherwise the RX does not work. */
- while ((base->S1 & UART_S1_RDRF_MASK) != 0U)
- {
- (void)base->D;
- }
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
- base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
- #endif
-
- handle->rxState = (uint8_t)kUART_RxParityError;
- handle->rxDataSize = 0U;
- /* Trigger callback. */
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_UART_ParityError, handle->userData);
- }
- }
-
- /* If RX overrun. */
- if (((uint32_t)kUART_RxOverrunFlag & status) != 0U)
- {
- /* Read base->D to clear overrun flag, otherwise the RX does not work. */
- while ((base->S1 & UART_S1_RDRF_MASK) != 0U)
- {
- (void)base->D;
- }
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
- base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
- #endif
- /* Trigger callback. */
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_UART_RxHardwareOverrun, handle->userData);
- }
- }
-
- /* If IDLE line was detected. */
- if ((((uint32_t)kUART_IdleLineFlag & status) != 0U) && ((UART_C2_ILIE_MASK & base->C2) != 0U))
- {
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /* If still some data in the FIFO, read out these data to user data buffer. */
- count = base->RCFIFO;
- /* If handle->rxDataSize is not 0, first save data to handle->rxData. */
- while ((count != 0U) && (handle->rxDataSize != 0U))
- {
- tempCount = (uint8_t)MIN(handle->rxDataSize, (uint32_t)count);
-
- /* Using non block API to read the data from the registers. */
- UART_ReadNonBlocking(base, handle->rxData, tempCount);
- handle->rxData += tempCount;
- handle->rxDataSize -= tempCount;
- count -= tempCount;
-
- /* If all the data required for upper layer is ready, trigger callback. */
- if (0U == handle->rxDataSize)
- {
- handle->rxState = (uint8_t)kUART_RxIdle;
-
- /* Disable RX interrupt/overrun interrupt/fram error/idle line detected interrupt */
- UART_DisableInterrupts(base, (uint32_t)kUART_RxDataRegFullInterruptEnable |
- (uint32_t)kUART_RxOverrunInterruptEnable |
- (uint32_t)kUART_FramingErrorInterruptEnable);
-
- /* Disable parity error interrupt when parity mode is enable*/
- if ((UART_C1_PE_MASK & base->C1) != 0U)
- {
- UART_DisableInterrupts(base, (uint32_t)kUART_ParityErrorInterruptEnable);
- }
-
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData);
- }
- }
- }
- #endif
- /* To clear IDLE, read UART status S1 with IDLE set and then read D.*/
- while ((UART_S1_IDLE_MASK & base->S1) != 0U)
- {
- (void)base->D;
- }
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- /* Flush FIFO date, otherwise FIFO pointer will be in unknown state. */
- base->CFIFO |= UART_CFIFO_RXFLUSH_MASK;
- #endif
- /* If rxDataSize is 0, disable idle line interrupt.*/
- if (0U == (handle->rxDataSize))
- {
- UART_DisableInterrupts(base, (uint32_t)kUART_IdleLineInterruptEnable);
- }
- /* If callback is not NULL and rxDataSize is not 0. */
- if ((handle->callback != NULL) && (handle->rxDataSize != 0U))
- {
- handle->callback(base, handle, kStatus_UART_IdleLineDetected, handle->userData);
- }
- }
- /* Receive data register full */
- if ((((uint32_t)kUART_RxDataRegFullFlag & status) != 0U) && ((UART_C2_RIE_MASK & base->C2) != 0U))
- {
- /* Get the size that can be stored into buffer for this interrupt. */
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- count = base->RCFIFO;
- #else
- count = 1;
- #endif
-
- /* If handle->rxDataSize is not 0, first save data to handle->rxData. */
- while ((count != 0U) && (handle->rxDataSize != 0U))
- {
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- tempCount = (uint8_t)MIN(handle->rxDataSize, (uint32_t)count);
- #else
- tempCount = 1;
- #endif
-
- /* Using non block API to read the data from the registers. */
- UART_ReadNonBlocking(base, handle->rxData, tempCount);
- handle->rxData += tempCount;
- handle->rxDataSize -= tempCount;
- count -= tempCount;
-
- /* If all the data required for upper layer is ready, trigger callback. */
- if (0U == handle->rxDataSize)
- {
- handle->rxState = (uint8_t)kUART_RxIdle;
-
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_UART_RxIdle, handle->userData);
- }
- }
- }
-
- /* If use RX ring buffer, receive data to ring buffer. */
- if (handle->rxRingBuffer != NULL)
- {
- while (0U != count--)
- {
- /* If RX ring buffer is full, trigger callback to notify over run. */
- if (UART_TransferIsRxRingBufferFull(handle))
- {
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_UART_RxRingBufferOverrun, handle->userData);
- }
- }
-
- /* If ring buffer is still full after callback function, the oldest data is overridden. */
- if (UART_TransferIsRxRingBufferFull(handle))
- {
- /* Increase handle->rxRingBufferTail to make room for new data. */
- if ((size_t)handle->rxRingBufferTail + 1U == handle->rxRingBufferSize)
- {
- handle->rxRingBufferTail = 0U;
- }
- else
- {
- handle->rxRingBufferTail++;
- }
- }
-
- /* Read data. */
- tmpdata = base->D;
- handle->rxRingBuffer[handle->rxRingBufferHead] = tmpdata;
-
- /* Increase handle->rxRingBufferHead. */
- if ((size_t)handle->rxRingBufferHead + 1U == handle->rxRingBufferSize)
- {
- handle->rxRingBufferHead = 0U;
- }
- else
- {
- handle->rxRingBufferHead++;
- }
- }
- }
-
- else if (0U == handle->rxDataSize)
- {
- /* Disable RX interrupt/overrun interrupt/fram error/idle line detected interrupt */
- UART_DisableInterrupts(base, (uint32_t)kUART_RxDataRegFullInterruptEnable |
- (uint32_t)kUART_RxOverrunInterruptEnable |
- (uint32_t)kUART_FramingErrorInterruptEnable);
-
- /* Disable parity error interrupt when parity mode is enable*/
- if ((UART_C1_PE_MASK & base->C1) != 0U)
- {
- UART_DisableInterrupts(base, (uint32_t)kUART_ParityErrorInterruptEnable);
- }
- }
- else
- {
- }
- }
-
- /* If framing error or parity error happened, stop the RX interrupt when use no ring buffer */
- if (((handle->rxState == (uint8_t)kUART_RxFramingError) || (handle->rxState == (uint8_t)kUART_RxParityError)) &&
- (NULL == handle->rxRingBuffer))
- {
- UART_DisableInterrupts(
- base, (uint32_t)kUART_RxDataRegFullInterruptEnable | (uint32_t)kUART_RxOverrunInterruptEnable |
- (uint32_t)kUART_FramingErrorInterruptEnable | (uint32_t)kUART_IdleLineInterruptEnable);
-
- /* Disable parity error interrupt when parity mode is enable*/
- if ((UART_C1_PE_MASK & base->C1) != 0U)
- {
- UART_DisableInterrupts(base, (uint32_t)kUART_ParityErrorInterruptEnable);
- }
- }
-
- /* Send data register empty and the interrupt is enabled. */
- if ((((uint32_t)kUART_TxDataRegEmptyFlag & status) != 0U) && ((base->C2 & UART_C2_TIE_MASK) != 0U))
- {
- /* Get the bytes that available at this moment. */
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- count = (uint8_t)FSL_FEATURE_UART_FIFO_SIZEn(base) - base->TCFIFO;
- #else
- count = 1;
- #endif
-
- while ((count != 0U) && (handle->txDataSize != 0U))
- {
- #if defined(FSL_FEATURE_UART_HAS_FIFO) && FSL_FEATURE_UART_HAS_FIFO
- tempCount = (uint8_t)MIN(handle->txDataSize, (uint32_t)count);
- #else
- tempCount = 1;
- #endif
-
- /* Using non block API to write the data to the registers. */
- UART_WriteNonBlocking(base, handle->txData, tempCount);
- handle->txData += tempCount;
- handle->txDataSize -= tempCount;
- count -= tempCount;
-
- /* If all the data are written to data register, TX finished. */
- if (0U == handle->txDataSize)
- {
- /* Disable TX register empty interrupt. */
- base->C2 = (base->C2 & ~(uint8_t)UART_C2_TIE_MASK);
- /* Enable transmission complete interrupt. */
- base->C2 = (base->C2 | (uint8_t)UART_C2_TCIE_MASK);
- }
- }
- }
-
- /* Transmission complete and the interrupt is enabled. */
- if ((0U != ((uint32_t)kUART_TransmissionCompleteFlag & status)) && (0U != (base->C2 & UART_C2_TCIE_MASK)))
- {
- /* Set txState to idle only when all data has been sent out to bus. */
- handle->txState = (uint8_t)kUART_TxIdle;
- /* Disable transmission complete interrupt. */
- base->C2 = (base->C2 & ~(uint8_t)UART_C2_TCIE_MASK);
- /* Trigger callback. */
- if (handle->callback != NULL)
- {
- handle->callback(base, handle, kStatus_UART_TxIdle, handle->userData);
- }
- }
- }
-
- /*!
- * brief UART Error IRQ handle function.
- *
- * This function handles the UART error IRQ request.
- *
- * param base UART peripheral base address.
- * param handle UART handle pointer.
- */
- void UART_TransferHandleErrorIRQ(UART_Type *base, uart_handle_t *handle)
- {
- /* To be implemented by User. */
- }
-
- #if defined(FSL_FEATURE_UART_HAS_SHARED_IRQ0_IRQ1_IRQ2_IRQ3) && FSL_FEATURE_UART_HAS_SHARED_IRQ0_IRQ1_IRQ2_IRQ3
- void UART0_UART1_UART2_UART3_DriverIRQHandler(void)
- {
- for (uint32_t instance = 0U; instance < 4U; instance++)
- {
- if (s_uartHandle[instance] != NULL)
- {
- s_uartIsr(s_uartBases[instance], s_uartHandle[instance]);
- }
- }
- }
- #else
- #if defined(UART0)
- #if ((!(defined(FSL_FEATURE_SOC_LPSCI_COUNT))) || \
- ((defined(FSL_FEATURE_SOC_LPSCI_COUNT)) && (FSL_FEATURE_SOC_LPSCI_COUNT == 0)))
- void UART0_DriverIRQHandler(void)
- {
- s_uartIsr(UART0, s_uartHandle[0]);
- SDK_ISR_EXIT_BARRIER;
- }
-
- void UART0_RX_TX_DriverIRQHandler(void)
- {
- UART0_DriverIRQHandler();
- SDK_ISR_EXIT_BARRIER;
- }
- #endif
- #endif
-
- #if defined(UART1)
- void UART1_DriverIRQHandler(void)
- {
- s_uartIsr(UART1, s_uartHandle[1]);
- SDK_ISR_EXIT_BARRIER;
- }
-
- void UART1_RX_TX_DriverIRQHandler(void)
- {
- UART1_DriverIRQHandler();
- SDK_ISR_EXIT_BARRIER;
- }
- #endif
-
- #if defined(UART2)
- void UART2_DriverIRQHandler(void)
- {
- s_uartIsr(UART2, s_uartHandle[2]);
- SDK_ISR_EXIT_BARRIER;
- }
-
- void UART2_RX_TX_DriverIRQHandler(void)
- {
- UART2_DriverIRQHandler();
- SDK_ISR_EXIT_BARRIER;
- }
- #endif
-
- #if defined(UART3)
- void UART3_DriverIRQHandler(void)
- {
- s_uartIsr(UART3, s_uartHandle[3]);
- SDK_ISR_EXIT_BARRIER;
- }
-
- void UART3_RX_TX_DriverIRQHandler(void)
- {
- UART3_DriverIRQHandler();
- SDK_ISR_EXIT_BARRIER;
- }
- #endif
- #endif
-
- #if defined(UART4)
- void UART4_DriverIRQHandler(void)
- {
- s_uartIsr(UART4, s_uartHandle[4]);
- SDK_ISR_EXIT_BARRIER;
- }
-
- void UART4_RX_TX_DriverIRQHandler(void)
- {
- UART4_DriverIRQHandler();
- SDK_ISR_EXIT_BARRIER;
- }
- #endif
-
- #if defined(UART5)
- void UART5_DriverIRQHandler(void)
- {
- s_uartIsr(UART5, s_uartHandle[5]);
- SDK_ISR_EXIT_BARRIER;
- }
-
- void UART5_RX_TX_DriverIRQHandler(void)
- {
- UART5_DriverIRQHandler();
- SDK_ISR_EXIT_BARRIER;
- }
- #endif
|